THERMAL AND MAGNETIC STRESS IN THE HORN: STATIC CASE

Benjamin Lepers IPHC Strasbourg

November 30, 2010

Benjamin Lepers [Euronu meeting](#page-20-0) November 30, 2010 1 / 21

- Model: electrical/resistive heating, Magnetic field/magnetic pressure, Temperature field/ thermal stress
- Material properties: electrical and thermal conductivity function of temperature
- Magnetic stress
- **o** Thermal stress
- **o** Total stress
- **•** Fatigue limit
- Total stress with increased cooling or thickness.
- **Conclusion**

COUPLED PHYSICS MODELS

- $I_0 = 350$ *kA*, $I_{rms} = 8750$ *A*. To model total stress, assume a magnetic pressure corresponding to peak current *I*0.
- *Qbeam* = 55*kA* deposited in the Beryllium target of length *L* = 0.78m and radius $R = 15$ mm. (obtain with Fluka).
- \bullet Cooling: {*h_{target}*, *h_{horn}*} = {10 − 20, 1 − 2} *kW*/(*m*²*K*)
- non linear because both electrical and thermal conductivity are temperature dependant.
- axisymmetric model: all variables are function of r and z.

MATERIAL PROPERTIES

- Model 1: constant electrical and thermal conductivity for Al and Be
- Model 2: Temperature dependant electrical and thermal conductivity for Al and Be

RESISTIVE LOSSES

- Total electrical loss are 37% higher than the one calculated with constant electrical conductivity
- Most electrical losses came from the inner conductor, conical sections and top end of the horn.
- $q_{elec} = \frac{\rho}{2}J^2$, the resistivity increased with temperature, \Rightarrow essential to maintain the inner conductor at low temperature.

MAGNETIC FLUX DISTRIBUTION

FIGURE: Magnetic flux distribution

FIGURE: Radial magnetic flux distribution, analytic and model

Benjamin Lepers [Euronu meeting](#page-0-0) November 30, 2010 6 / 21

STRESS FROM MAGNETIC PRESSURE IN THE HORN

- Stress in the conductor around 100 Mpa
- Stress increase with smaller radius

MAGNETIC STRESS IN THE BACK AND CONICAL CONDUCTOR

COMPARISON THERMAL/MAGNETIC STRESS

- magnetic stress is dominant, peak stress corresponding to $I_0 = 350$ kA, frequency: 12.5 Hz.
- thermal stress important for domain with high temperature
- can increase thickness to lower the total stress

TEMPERATURE FIELD, σ , $k = C$ ste

FIGURE: Target and horn, *Tmax* above $270\,^{\circ}$ C, $h_{target} = 10$ k W/m^2K , $h_{\textit{horn}} = 1 \, \mathit{kW} / \mathit{m}^2 \mathit{K}$

FIGURE: Top end of the horn, *Tmax* above $270\,^{\circ}$ C, $h_{\text{target}} = 10$ k W/m^2K , $h_{\textit{horn}} = 1 \, \textit{kW} / \textit{m}^2 \, \textit{K}$

TEMPERATURE FIELD, $\sigma(T)$, $k(T)$

FIGURE: Target and horn, *Tmax* around $350\,^{\circ}\mathrm{C},\,h_{\textit{target}}=10$ k $W/m^{2}K,$ $h_{\textit{horn}} = 1 \, \textit{kW} / \textit{m}^2 \, \textit{K}$

FIGURE: Top end of the horn, *Tmax* above $440\degree$ C, $h_{target} = 10kW/m^2K$, $h_{\textit{horn}} = 1 \, \textit{kW/m}^2 \, \textit{K}$

TEMPERATURE FIELD, $\sigma(T)$, $k(T)$

FIGURE: Target and horn, *Tmax* around $245\,^{\circ}$ C, $h_{\text{target}} = 20$ k W/m^2K , $h_{\textit{horn}} = 2kW/m^2K$

FIGURE: Top end of the horn, *Tmax* above $200\,^{\circ}\mathrm{C},\,h_{\text{target}}=20kW/m^{2}K,$ $h_{\textit{horn}} = 2kW/m^2K$

ELECTRICAL CONDUCTIVITY

FIGURE: Target and horn, $\sigma_{max} = 2.5E7[S/m]$

FIGURE: Top end of the horn, $\sigma_{\text{max}} = 2.5E7[S/m]$

THERMAL CONDUCTIVITY

- thermal conductivity of AI do not vary significantly for Al
- thermal conductivity of Be strongly with temperature ⇒ maintain low temperature

TARGET STRESS, σ , $k = \text{cste}$

 $FIGURE:$ Stress components in the target $z = 2$ cm, thermal and mag+thermal stress

- cooling target $h = 10 \, \text{kW}/(\text{m}^2 \text{K})$
- $S_{\phi} = S_{r} = p(R) = -8.66$ MPa. Model correct checked with analytic expression
- $|\mathcal{S}_{\phi \text{maq}}| \ll |\mathcal{S}_{\phi \text{ther}}|$
- $S_{zmaq+ther} = S_{zther} + 46$ Mpa
- cylinder in compression in the z direction for $r \in [0, 1]$ cm
- cylinder in traction in z direction for $r \in [1, 1.5]$ cm
- Von mises stress level: \sim 100 − 200 Mpa
- Fatigue strength of Beryllium \sim 100 Mpa

STRESS IN THE CONDUCTORS, σ , $k = \text{cste}$

- Stress gets very high for low radius
- **•** high stress level in perpendicular junction, stress concentrations; singularities.
- **o** Important stress level $>> 100$ Mpa in back; top and conical sections; especially at low radius.

FIGURE: Von mises stress distribution for each conductor segment

DISPLACEMENT FIELD, $\sigma(T)$, $k(T)$

FIGURE: Total displacement due to magnetic and thermal stress, *Umax* = 5 cm

FIGURE: Total displacement in the target/conductor region, $U_{max} \sim 2, 3$ mm

TARGET STRESS, $\sigma(T)$, $k(T)$

- cylinder in traction in z direction for $r \in [0.8, 1.5]$ cm
- stress level higher than fatigue strength (2 times higher than fatigue strength of Be)
- would be (maybe ?) ok if the target was not a structural element of the horn
- for an integrated target: level of stress too high:⇒ increased cooling to decreased thermal stress.

 $FIGURE:$ Stress in the radial direction at $z = 2$ cm

HORN STRESS, $\sigma(T)$, $k(T)$

- **•** Stress increase with lower radius
- **•** too high stress level in conical section
- stress level higher than fatigue strength
- o difference only in the beryllium part (target) because thermal conductivity of Be changes with temperature, \Rightarrow thermal stress

FATIGUE

- $N = 8E8$: total number of pulses
- 4 horns: $\frac{N}{4}$ pulses per horn at frequency 12.5 Hz.
- $\tau = \frac{N}{f} = 16 \times 10^6$ s , \sim 6 months continuously
- Al: no fatigue limit, properties degrading as N increased
- max stress for AL as low as possible, maybe below 50 Mpa
- fatigue limit of Be: \sim 100 Mpa.
- different story for weld junctions
- Need study on irradiation effect on materials and lifetime.
- **e** Effect of water on lifetime ?
- increased thickness and/or increased cooling to decreased thermal stress.
- **o** model with increased thickness
- need to have low stress to have acceptable lifetime.
- others: fatigue joints, welding.
- effect or irradiation; structural damage
- **e** effect of water