THERMAL AND MAGNETIC STRESS IN THE HORN: STATIC CASE

Benjamin Lepers IPHC Strasbourg

November 30, 2010

Benjamin Lepers

Euronu meeting

November 30, 2010 1 / 21

- Model: electrical/resistive heating, Magnetic field/magnetic pressure, Temperature field/ thermal stress
- Material properties: electrical and thermal conductivity function of temperature
- Magnetic stress
- Thermal stress
- Total stress
- Fatigue limit
- Total stress with increased cooling or thickness.
- Conclusion

COUPLED PHYSICS MODELS

Model	Equation	Input	BC	Output
AC/DC	$j\omega\mu\mathbf{H} + \frac{1}{\sigma + i\omega\epsilon}\nabla \times [\nabla \times \mathbf{H}] = 0$	$H_{0\phi} = \frac{I_{rms}}{2\pi r}$	$\mathbf{n} \times \mathbf{E} = 0 \Leftrightarrow H_n = 0$	J, B
	$\sigma = \sigma(T)$			Qav _{emqh}
Thermal	$\nabla \cdot [k \nabla T] + q = 0$	$q = Q_{beam} + Qav_{emqh}$	$q'' = \bar{h}[T - T_{\infty}]$	Т
	k = k(T)			
Mechanical	$\frac{\partial \sigma_{f}}{\partial t} + \frac{\partial \tau_{fZ}}{\partial z} + \frac{\sigma_{r} - \sigma_{\theta}}{t} + F_{r} = 0$	$dF_r = -Re(B_\phi) \times Re(J_z)$	$u_r(z=0)=0$	u
	$\frac{\partial \tau_{IZ}}{\partial r} + \frac{\partial \sigma_Z}{\partial z} + \frac{\tau_{IZ}}{r} + F_Z = 0$	$dF_z = Re(J_r) \times Re(B_{\phi})$	$u_Z(r=0)=0$	s
linear elast	$\vec{\sigma} = \mathbf{E}\vec{\epsilon}$	$\Leftrightarrow p(r) = \frac{\mu l_0^2}{8\pi^2 r^2}$		
Mechanical	idem	idem	idem	u _{tot}
& thermal	$\vec{\epsilon} = \vec{\epsilon_{el}} + \vec{\epsilon_{th}}$	α, T	$T_{ini} = T_{ref}$	s _{tot}
	$\vec{\epsilon_{th}} = \mathbf{I}\alpha(T - T_{ref})$			

- $I_0 = 350 kA$, $I_{rms} = 8750 A$. To model total stress, assume a magnetic pressure corresponding to peak current I_0 .
- $Q_{beam} = 55kA$ deposited in the Beryllium target of length L = 0.78m and radius R = 15 mm.(obtain with Fluka).
- Cooling: $\{h_{target}, h_{horn}\} = \{10 20, 1 2\} kW/(m^2K)$
- non linear because both electrical and thermal conductivity are temperature dependant.
- axisymmetric model: all variables are function of r and z.

MATERIAL PROPERTIES

- Model 1: constant electrical and thermal conductivity for AI and Be
- Model 2: Temperature dependant electrical and thermal conductivity for Al and Be

Benjamin Lepers

RESISTIVE LOSSES

	Q[kW]	tot	1+1"	2	3	4	5 + 6	7	8	9
•	$\sigma = \sigma_0$	27	14	2.5	1.0	2.6	4.1	1.3	0.23	1.4
	$\sigma = \sigma(T)$	37	20.8	2.7	1.0	2.9	6.5	1.3	0.23	1.5

- Total electrical loss are 37% higher than the one calculated with constant electrical conductivity
- Most electrical losses came from the inner conductor, conical sections and top end of the horn.
- q_{elec} = ^p/₂J², the resistivity increased with temperature, ⇒ essential to maintain the inner conductor at low temperature.

Benjamin Lepers

MAGNETIC FLUX DISTRIBUTION

FIGURE: Magnetic flux distribution

FIGURE: Radial magnetic flux distribution, analytic and model

Benjamin Lepers

Euronu meeting

November 30, 2010 6 / 21

STRESS FROM MAGNETIC PRESSURE IN THE HORN

- Stress in the conductor around 100 Mpa
- Stress increase with smaller radius

MAGNETIC STRESS IN THE BACK AND CONICAL CONDUCTOR

Benjamin Lepers

COMPARISON THERMAL/MAGNETIC STRESS

- magnetic stress is dominant, peak stress corresponding to *I*₀ = 350 kA, frequency: 12.5 Hz.
- thermal stress important for domain with high temperature
- can increase thickness to lower the total stress

TEMPERATURE FIELD, σ , k = Cste

FIGURE: Target and horn, T_{max} above 270 °C, $h_{target} = 10kW/m^2K$, $h_{horn} = 1kW/m^2K$ FIGURE: Top end of the horn, T_{max} above 270 °C, $h_{target} = 10 kW/m^2 K$, $h_{horn} = 1 kW/m^2 K$

TEMPERATURE FIELD, $\sigma(T)$, k(T)

FIGURE: Target and horn, T_{max} around 350 °C, $h_{target} = 10kW/m^2K$, $h_{horn} = 1kW/m^2K$

FIGURE: Top end of the horn, T_{max} above 440 °C, $h_{target} = 10 kW/m^2 K$, $h_{horn} = 1 kW/m^2 K$

TEMPERATURE FIELD, $\sigma(T)$, k(T)

FIGURE: Target and horn, T_{max} around 245 °C, $h_{target} = 20kW/m^2K$, $h_{horn} = 2kW/m^2K$ FIGURE: Top end of the horn, T_{max} above 200 °C, $h_{target} = 20kW/m^2K$, $h_{horn} = 2kW/m^2K$

ELECTRICAL CONDUCTIVITY

FIGURE: Target and horn, $\sigma_{max} = 2.5E7[S/m]$

FIGURE: Top end of the horn, $\sigma_{max} = 2.5 E7[S/m]$

THERMAL CONDUCTIVITY

- thermal conductivity of AI do not vary significantly for AI
- thermal conductivity of Be strongly with temperature ⇒ maintain low temperature

TARGET STRESS, σ , k = cste

FIGURE: Stress components in the target z = 2cm, thermal and mag+thermal stress

• cooling target $h = 10 \ kW/(m^2K)$

- S_φ = S_r = p(R) = -8.66 MPa. Model correct checked with analytic expression
- $|S_{\phi mag}| \ll |S_{\phi ther}|$
- $S_{zmag+ther} = S_{zther} + 46$ Mpa
- cylinder in compression in the z direction for r∈[0, 1] cm
- cylinder in traction in z direction for *r*∈[1, 1.5] cm
- Von mises stress level: \sim 100 200 Mpa
- Fatigue strength of Beryllium \sim 100 Mpa

Benja	min L	.epers
-------	-------	--------

STRESS IN THE CONDUCTORS, σ , k = cste

- Stress gets very high for low radius
- high stress level in perpendicular junction, stress concentrations; singularities.
- Important stress level
 >> 100 Mpa in back; top and conical sections; especially at low radius.

FIGURE: Von mises stress distribution for each conductor segment

DISPLACEMENT FIELD, $\sigma(T)$, k(T)

FIGURE: Total displacement due to magnetic and thermal stress, $U_{max} = 5 \text{ cm}$

FIGURE: Total displacement in the target/conductor region, $\textit{U}_{max} \sim 2,3~\text{mm}$

TARGET STRESS, $\sigma(T)$, k(T)

- cylinder in traction in z direction for *r*ε[0.8, 1.5] cm
- stress level higher than fatigue strength (2 times higher than fatigue strength of Be)
- would be (maybe ?) ok if the target was not a structural element of the horn
- for an integrated target: level of stress too high:⇒ increased cooling to decreased thermal stress.

FIGURE: Stress in the radial direction at z = 2 cm

HORN STRESS, $\sigma(T)$, k(T)

- Stress increase with lower radius
- too high stress level in conical section
- stress level higher than fatigue strength
- difference only in the beryllium part (target) because thermal conductivity of Be changes with temperature, ⇒ thermal stress

FATIGUE

- N = 8E8: total number of pulses
- 4 horns: $\frac{N}{4}$ pulses per horn at frequency 12.5 Hz.
- $\tau = \frac{N}{f} = 16 \times 10^6 s$, ~ 6 months continuously
- Al: no fatigue limit, properties degrading as N increased
- max stress for AL as low as possible, maybe below 50 Mpa
- fatigue limit of Be: \sim 100 Mpa.
- different story for weld junctions
- Need study on irradiation effect on materials and lifetime.
- Effect of water on lifetime ?

- increased thickness and/or increased cooling to decreased thermal stress.
- model with increased thickness
- need to have low stress to have acceptable lifetime.
- others: fatigue joints, welding.
- effect or irradiation; structural damage
- effect of water