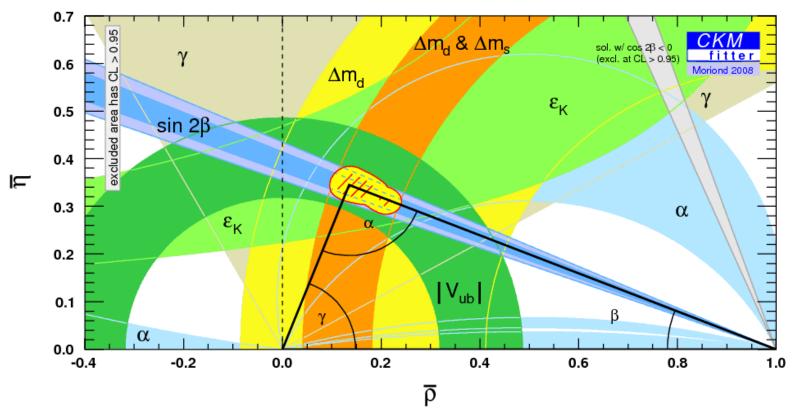
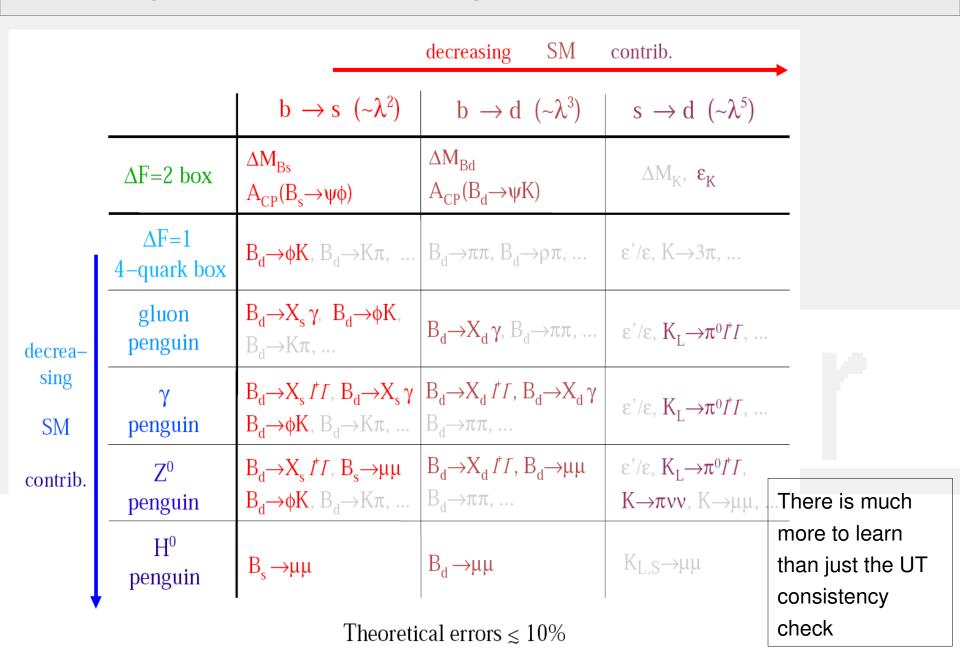


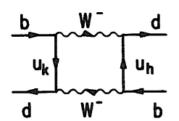
シーケーエムフィッター


FJPPL'08 – CNRS/IN2P3 Headquarter May 15-16 2008

Outline

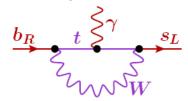
- * FJPPL '08:
 - SuperBelle: Prospective with 10 ab⁻¹
 - ΔF=1FCNC transitions: NP in Wilson Coefficients
 - Determination of the angle γ/ϕ_3 :
 - statistics: p-value and nuisance parameters

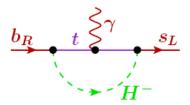

Why believe the KM mechanism?


The great success of the B factories and Tevatron (and the Standard Model): the KM mechanism is the dominant source of CPV at the EW scale.

But the UT is not the whole story!

New Physics in Flavor Physics

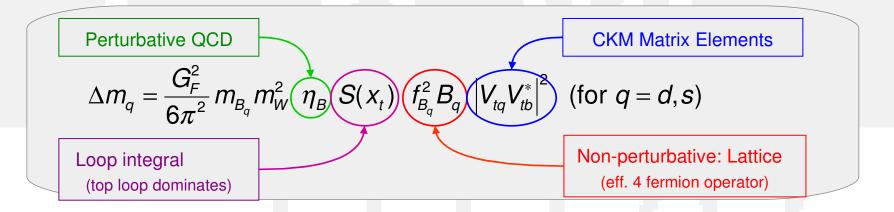

Mixing



$$\begin{array}{c|cccc}
b & \widetilde{\chi}_{\bar{j}} & d \\
\hline
\widetilde{u}_{k} & \widetilde{u}_{h} \\
\hline
d & \widetilde{\chi}_{\bar{i}} & b
\end{array}$$

Simple parameterization for each neutral meson: $M_{12} = M_{12}^{\rm SM} (1 + he^{2i\sigma})$

Penguin decays


Many operators for $b \rightarrow s$ transitions — no simple parameterization of NP

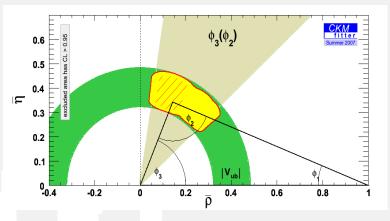
→ NP in flavor physics: explore FCNC and precision measurements

New Physics in $\Delta B=2$ transitions

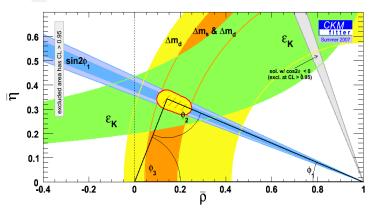
$$B^{0} \begin{array}{c|cccc} \overline{b} & [\Delta B=2] & \overline{d}/\overline{s} \\ \hline W & \overline{t} & B^{0} \\ \underline{d/s} & t & W & \overline{t} & \underline{b} \end{array}$$

CDF- hep-ex/0609040

HFAG PDG08


 $\Delta m_s : 17.77 \pm 0.12 \text{ ps}^{-1}$

 $\Delta m_d : 0.507 \pm 0.005 \text{ ps}^{-1}$


- lpha Dominant theoretical uncertainties : $\sigma_{\rm rel} \left(f_{B_{d/s}} \sqrt{B_{d/s}} \right)$; 16%
- Improved error indirect via Δm_s : $\sigma_{\rm rel} \left(\xi = f_{B_s} \sqrt{B_s} / f_{B_d} \sqrt{B_d} \right)$; 5%
 - → Lattice QCD [SU(3) breaking correction]

What is required for NP search from the UT?

- In the search of NP from the UT consistency check, it is needed:
 - \rightarrow improve the determination of γ
 - improve LQCD [bag factors, decay constants, etc.]
- In the coming years, more precise measurements will become available from LHCb and Super B factories [some of which may become systematicslimited]
- NP sensitivity from the global fit will become more dependent on theoretical uncertainties.
- Case studies for three different predictions of theoretical uncertainties in near future:
 - 1) current values(>O(10%)), 2) O(5%), 3) O(1%)
- Experimental inputs: expected accuracies at SuperBelle with 10 ab⁻¹.

Tree(NP Free): "Reference UT"

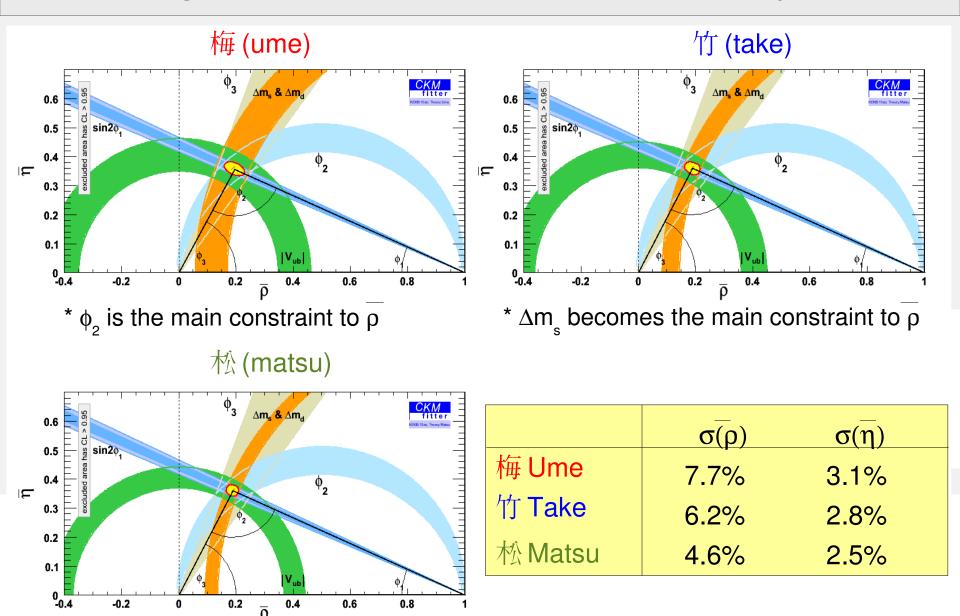
Loop: sensitive to NP

	Center	σ(0.5/ab)	σ(10/ab)	σ(50/ab)
V_{ub}	3.94×10 ⁻³	6.3%	3%	2 %
Δm_d	0.507	0.8% (sys.limit)	0.8%	0.8%
sin2 ₀	0.734	5.5%	2%	1.5%
ϕ_2 (deg.)	94.6	11°	3°	2°
ϕ_3 (deg.)	61.6	19°	4°	3°
$B(B \rightarrow \tau \nu)$	1.13×10 ⁻⁴	38%	8%	4%
$\frac{B(B \to \rho/\omega\gamma)^{Y}}{B(B \to K^{Y})}$	0.032	25%	6%	3%
$\Delta m_{_{s}}$	18.77	0.06%	0.06%	0.06%

^{*} Systematic errors are included in the quoted errors.

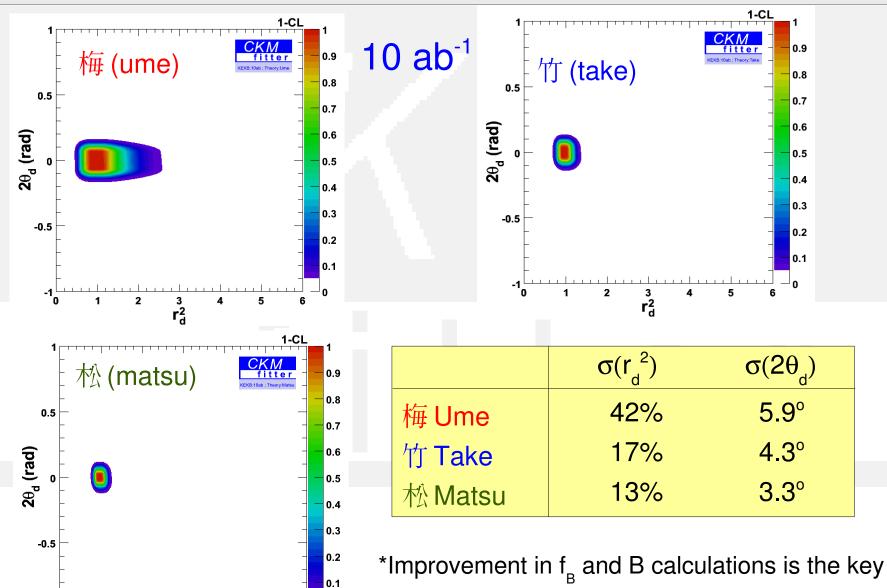
^{*} Δm_s : LHCb expectation

梅 (ume) : uncertainties currently used in CKMfitter

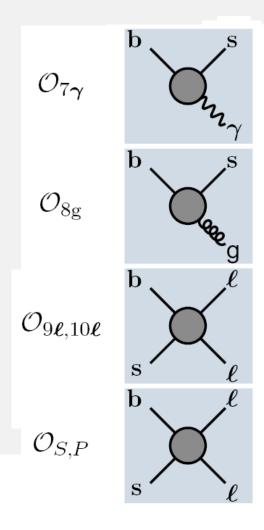

(take) : uncertainties based on the predictions by S.Sharpe[1]

松 (matsu): uncertainties based on the predictions by V.Lubicz[2]

	central value	梅 (ume)	errors 竹 (take)	松 (matsu)
f_{Bs} $f_{Bs}\sqrt{B_{s}}$	0.233 0.277 1.24	14% 13% 5%	4% 4% 2%	1% 1% 1%
V_{ub} theory $B\rightarrow \rho \gamma$ theory		7% 11%	4% 8%	2% 4%


[1] Lattice '04 ORSAY – 60TFlop year[2] IV SuperB Workshop '06 – 10 PFlop year

Results of global CKM fit with 10 ab⁻¹ data sample


New Physics in Mixing $[M = M_{SM} r_d^2 exp(-i2\theta_d)]$

3 r_d²

in the model independent NP search.

ΔF=1 FCNC: b→s transitions and OPE

Describe *b*→*s* transitions by an effective Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{\text{ts}}^* V_{\text{tb}} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

- Long Distance:
 - Operators O_i
- Short Distance:
 - Wilson coef. C_i

New physics shows up as modified C_i , (or as new operators)

Operators and Observables

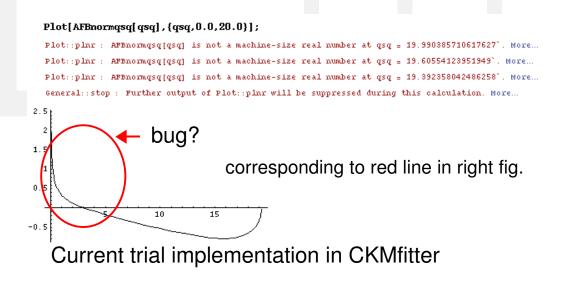
		magnitude	phase	helicity flip \mathcal{O}_i'
$\mathcal{O}_{7oldsymbol{\gamma}}$	b S	$b \to s \gamma$	$a_{CP}(b \to s\gamma)$	$ \begin{array}{c} \Lambda_b \to \Lambda \gamma \\ B \to (K^* \to K\pi)\ell^+\ell^- \\ B \to (K^{**} \to K\pi\pi)\gamma \end{array} $
$\mathcal{O}_{8\mathrm{g}}$	b s s	$\begin{array}{c} b \to s \gamma \\ B \to X_c \end{array}$	$a_{CP}(b \to s\gamma)$ $B \to K\phi$	$ \begin{array}{c} \Lambda_b \to \Lambda \phi \\ B \to K^* \phi \end{array} $
$\mathcal{O}_{9oldsymbol{\ell},10oldsymbol{\ell}}$	$\frac{\mathbf{b}}{\mathbf{s}}$	$b \rightarrow se^+e^-$	$A_{FB}(b \to s\ell^+\ell^-)$	$B \to (K^* \to K\pi)\ell^+\ell^-$
$\mathcal{O}_{S,P}$	$\frac{\mathbf{b}}{\mathbf{s}}$	$B_{d,s} \to \mu^+ \mu^-$	$B_{d,s} \to \tau^+ \tau^-$	$b \to s \tau^+ \tau^-$

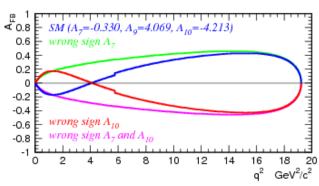
Wilson Coefficient Fits

- In the framework of CKM fit, the NP effect is searched for in the $B_{d,s}$ - $B_{d,s}$ mixing diagram, i.e., comparison of ρ - η constraints by $(\beta/\phi_1, \alpha/\phi_2, \Delta m_{d,s})$ and by $(\gamma/\phi_3, V_{ub})$
- A complementary NP search can be performed by studying the FCNC transitions like $B \rightarrow X_s \gamma$ and $B \rightarrow X_s I^{\dagger}I^{-}$ which are governed by Wilson Coefficients C_7 , C_9 and C_{10} .
- The determination of Wilson Coefficients using various FCNC decays simultaneously in the similar manner as that in CKM fit (global fit) can be a sensitive probe to NP by comparing with the SM expectations.

NP in Wilson Coefficients (cont'd)

- Belle measurement of A_{FB} in $B \rightarrow K^*II$ already gives good constraints to Wilson coefficients.
- The extension of this approach is considered to include other measurements together in the fit.
- Inputs
 - * Br(B \rightarrow K* γ)
 - * Br($B \rightarrow K^*I^+I^-$)
 - * $A_{FR}(B \rightarrow K^*I^+I^-)$ as a function of q^2 (5 points)
- Free parameters: Wilson Coefficients C₇, C₉ and C₁₀.
 - * |V_{th}V_{te}*| is given through the standard CKMfitter interface.
- Theoretical model:


based on the paper by A. Ali, et al.


PRD 61, 0704024 (2000)

- Coded as an add-on theory model for CKMfitter.

Status: some work still needed

- Coding of theory model in Mathematica completed.
- Test of the coding is in progress:
 - * Still have problems to reproduce A_{FB}(q²) written in the paper by Ali, et al.
 - → Careful check of both coding and theoretical expression
- More up-to-date NNLO theoretical calculations will be implemented after this trial is successful.
- Aiming at the completion by next annual CKMfitter meeting and hopefully the presentation at autumn JPS meeting.

Ali's paper (drawn by Ishikawa)

Complex extraction of γ

GLW
$$R_{CP+-} = 1 \pm 2 r_B \cos(\delta_B) \cos(\phi_3) + r_B^2$$

$$A_{CP+-} = \pm 2 r_B \sin(\delta_B) \sin(\phi_3) / R_{CP+-}$$

$$\mathbf{ADS} \qquad \mathbf{R_{ADS}} = \mathbf{r_B}^2 + \mathbf{r_D}^2 + 2\mathbf{r_B}\mathbf{r_D}\mathbf{cos}(\delta_{\mathbf{B}} + \delta_{\mathbf{D}})\mathbf{cos}\phi_3$$

$$\mathbf{GGSZ} \quad (\mathbf{x}_{+-}, \mathbf{y}_{+-}) = (\mathbf{r}_{\mathbf{B}} \mathbf{cos}(\delta_{\mathbf{B}} \pm \phi_3), \mathbf{r}_{\mathbf{B}} \mathbf{sin}(\delta_{\mathbf{B}} \pm \phi_3))$$

 $\begin{array}{c} R_{CP\pm}, A_{CP\pm} \ for \ DK, D^*K, DK^* \\ \textbf{32 observables} \ R_{ADS} \ for \ DK, D^*K, DK^*, for \ K\pi, K\pi\pi^0 \\ (\textbf{x}_\pm, \textbf{y}_\pm) \ for \ DK, D^*K, DK^* \end{array}$

$$\mathbf{r}_{\mathrm{B}}$$
, $\mathbf{r}_{\mathrm{B}}^{\mathrm{*}}$, $\mathbf{r}_{\mathrm{B}}^{\mathrm{K}^{\mathrm{*}}}$, δ_{B} , $\delta_{\mathrm{B}}^{\mathrm{*}}$, $\delta_{\mathrm{B}}^{\mathrm{K}^{\mathrm{*}}}$, $\delta_{\mathrm{D}_{\mathrm{K}\pi}}$ $\delta_{\mathrm{D}_{\mathrm{K}\pi}}$ $\delta_{\mathrm{D}_{\mathrm{K}\pi\pi^{0}}}$, $\delta_{\mathrm{D}_{\mathrm{K}\pi\pi^{0}}}$, $\delta_{\mathrm{D}_{\mathrm{K}\pi\pi^{0}}}$, $\delta_{\mathrm{D}_{\mathrm{K}\pi\pi^{0}}}$

→ composite hypothesis (nuisance parameters): heavy statistical procedure

L. Demortier - CDF 8662 [PHYSTAT 2007 @CERN]

Assuming that the agreement between the data and the theory is OK (p-value(χ^2_{min}))

- Perform metrology (estimation of theory parameters):
- 1) Wilks (profile) likelihood-ratio test statistic [W(a) $\equiv \Delta \chi^2(a) = \chi^2(a, \hat{\mu}(a)) \chi^2_{min}$]
 - a=parameters of interest (γ) , μ =nuisance parameters (r,δ)
 - profile: take MLE of μ for each value of a [MINOS for CI in Minuit]
- 2) if the sampling pdf of W is a χ^2 law, p-value (CL) with Prob() [the W test is pivotal [distribution under H₀ independent of nuisance parameters]]
- 3) if not: it's where the situation starts becoming complicated \$\infty\$ toy Monte Carlo But the sampling pdf depends, in general, on the nuisance parameters.

What to do with the nuisance parameters?

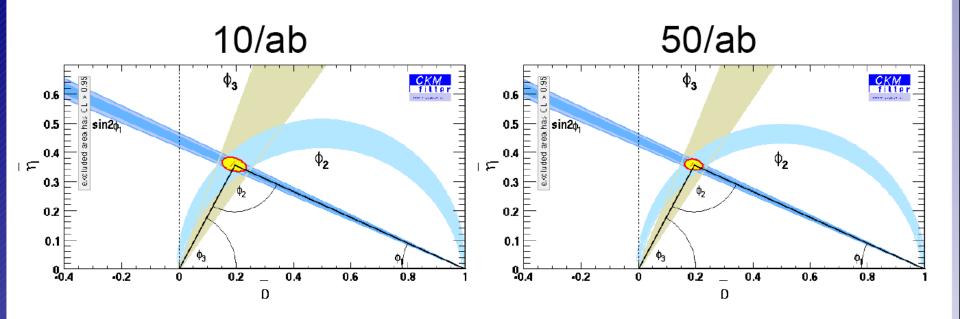
- plug-in principle (first order parametric bootstrap): take MLE for the nuisance parameters
- adjusted p-value (second order parametric bootstrap)
- supremum method: least favorable values for the nuisance parameters
- L. Demortier's talk@PHYSTAT2007 [http://phystat-lhc.web.cern.ch/phystat-lhc/]
- A.C. Davison and D.V. Hinkley, Bootstrap Methods and their Application (1997)

Conclusion

Several on-going activities:

- prospective studies for SuperBelle
- New Physics search in Wilson coefficients.
- Longer term: ΔF=1 rare decays. [very complex NNLO formulas ... to be implemented and checked]
- Try to improve statistical treatment [beware of naïve average and/or naïve confidence interval from likelihood (check coverage probability if you want to have correct uncertainties)]

BACKUP SLIDES


Bayesian?

Conclusions: Bayesian or frequentist?

F. James – Moriond QCD 07

- The main problem in Bayesian methodology is the prior. Use Bayesian methods when you know the prior and have a good reason to use it. The only case I know where that is true is maximum entropy image processing.
- Use Bayesian decision theory to make it clear what are the subjective criteria for your decision. [Example: where to look for new physics.]
- For everything else, in particular objective data analysis, I
 don't see any reason to use Bayesian methods. We now know
 how to handle all the situations (nuisance parameters,
 systematic errors) that used to cause problems in the
 frequentist methodology.
- 4. Very few people would believe a result that can only be obtained by a Bayesian analysis with an arbitrary prior.

Results of global CKM fit with angle measurements only

	$\sigma(\overline{\rho})$	$\sigma(\overline{\eta})$
10/ab	8.7%	2.8%
50/ab	6.7%	2.1%

^{*} Constraints by exp. measurements only in principle!

BNM2008, R.Itoh 13