

D_R&D_6 Liquid xenon detector technology

XEMIS project: a liquid Xenon detector for medical imaging

Alain MERY

postdoc, Subatech, Nantes

Outline :

- Introduction : medical imaging PET
- \blacktriangleright 3 γ imaging with LXe
- ► XEMIS prototype
- Experimental results
 - cryogenics
 - detection
- Conclusion and outlooks

- Introduction : medical imaging PET
- \blacktriangleright 3 γ imaging with LXe
- ► XEMIS prototype
- Experimental results
 - cryogenics
 - detection
- Conclusion and outlooks

Introduction: Positron Emission Tomography (PET) 4

- Injection of radiotracers (β^+ emitters ex: ¹⁸F-FDG, T₁ = 2 hours, T_{Bmax} = 633 keV)
- Detection of 511 keV γ in coincidence (BGO crystals)
- Reconstruction of the Line of Response (LOR)

- Introduction : medical imaging PET
- \blacktriangleright 3 γ imaging with LXe
- ► XEMIS prototype
- Experimental results
 - cryogenics
 - detection
- Conclusion and outlooks

3γ medical imaging

<u>Principle</u> : - $\beta^+ \gamma$ emitter (⁴⁴Sc from Arronax cyclotron (sep. 2008) : $T_{\frac{1}{2}} = 4$ hours, $T_{\beta max} = 1474$ keV, $E\gamma = 1157$ keV)

- classical PET + Compton telescope
- LOR + γ incident direction cone (Δ , θ)
 - \rightarrow 3D reconstruction event by event
 - \Rightarrow reduction of the incertitude position along the LOR

angular resolution of the telescope \Leftrightarrow energy and position resolutions

Expected performances

Energy and position resolution : $\sigma_E = 6 \% @ 1 \text{ MEV} [E. April, NIMA 480, 2002]$ $\sigma_{xy} = 1 \text{ mm}, \sigma_z = 100 \mu \text{m}$

- \rightarrow position along the LOR : $\Delta L < 1.5$ cm for small animal imaging
- \rightarrow no reconstruction algorithm

- Introduction : medical imaging PET
- \blacktriangleright 3 γ imaging with LXe
- ► XEMIS prototype
- Experimental results
 - cryogenics
 - detection
- Conclusion and outlooks

LXe technology

Xenon liquefaction at low pressure (< 2 bars)</p>

- gas \rightarrow liquid transition : about -110 °C

<u>ex</u>: $T_{condensation}$ = -108°C and $T_{freezing}$ = -112°C for P = 1 bar

- precise temperature regulation

- cold head : Pulse Tube Refrigerator (see Prof. Tom Haruyama's talk)

Xenon purification

- LXe purity level < 1 ppb $(O_2, H_2O, CO_2...)$
- gas purifiers
- gas circulation

XEMIS prototype

PTR Cryocooler

XEMIS prototype 12 Teflon Cathode PMT **Micromeshes** Entrance and Anode window

XEMIS prototype

<u>Control system</u>: using Labview (E. Morteau)

- Introduction : medical imaging PET
- \blacktriangleright 3 γ imaging with LXe
- ► XEMIS prototype
- Experimental results
 - cryogenics
 - detection
- Conclusion and outlooks

Experimental results : cryogenics

<u>April 2008</u>:

- Liquefaction of 30 kg of Xe @ P=1.63 bar
 - \rightarrow need for a long pre-cooling period of the cryostat
 - \rightarrow new heat-exchanger geometry
 - \rightarrow liquefaction rate : about 1.5 kg / hour
- circulation and purification
 - validation of vaporization tube and pump (from KEK)
 - estimated flow : 1 kg / hour

- stable operation during 6 days \rightarrow safety system : OK

Tests with ²²Na source : measurement in coïncidence of 511 keV photons

External trigger = CsI detector

Typical scintillation signal from PMT:

Coïncidence with Xenon PMT possible coïncidence window on 511 keV (CsI)

 \Rightarrow Evidence of 511 keV γ detection in LXe

<u>Purification effect on scintillation signal :</u>

Continuous signal improvement on PMT : ~ 6% in 3 days (preliminary)

 \rightarrow Similar tests with charge collection...

Electronic noise on anode :

 \Rightarrow important modification on PTR support

- Introduction : medical imaging PET
- \blacktriangleright 3 γ imaging with LXe
- ► XEMIS prototype
- Experimental results
 - cryogenics
 - detection
- Conclusion and outlooks

Conclusion

XEMIS prototype

- cryogenic : 'almost' validate for larger device
 - 30 kg LXe inside the detector
 - safety recovering : OK
 - non human assistance : OK
 - circulation and purification :

first stable operation for 6 days

optimization under progress

investigation on cryogenics for human camera
first proposal at the end of 2008 ?

- detection : scintillation : first promising observations
 - ionization : noise reduction \rightarrow vibration damper on PTR

Outlooks

XEMIS team :

Dominique Thers Jean-Pierre Cussonneau Eric Morteau Patrick Le Ray Cyril Grignon Samuel Duval Noel Servagent Alain Méry

Tom Haruyama

mainly founded by :

