## Construction and Tests of MPGD TPC Endplate Prototypes for the ILC

-- Status and Perspectives --

Keisuke Fujii on behalf of the D-R&D 2 Team FJPPL Workshop, '08 CNRS HQ: 15 May, 2008

### We would like to dedicate this talk to Late Vincent Lapeltier



Vincent made invaluable contributions to the DELPHI-TPC and more recently to the R&D for the LC-TPC.

It was only two months ago when we discussed together in Japan the basic research on the gas multiplication processes and the future of the LC-TPC developments.

### Introduction

### Performance Goals for the LC-TPC

>200 sampling points along a track with a spatial resolution better than ~100 microns in the XY plane over the full drift length of >200 cm

 2-track separation better than ~2mm to assure essentially 100% tracking efficiency for jetty events

High tracking efficiency also requires minimization of dead spaces near the boundaries of readout modules

## Why MPGD readout?

- We need high (>3 T) B field to confine e+e- pair BG from beam-beam interactions, then ExB too big for conventional MWPC readout
- 2mm 2-track separation is difficult with MWPC readout
- Thick frames are unavoidable for MWPC readout

### **MicroMEGAS**

GEM











Micro-Pattern Gas Detectors

# The Three R&D Phases for the ILC TPC

### R&D Phase

- 1. <u>Demonstration Phase</u>: Provide a basic evaluation of the properties of an MPGD TPC and demonstrate that the requirements (at ILC) can be met using small prototypes.
- 2. <u>Consolidation Phase</u>: Design, build and operate a "Large Prototype" (of large number of measured points) at the EUDET facility in DESY.
- 3. <u>Design Phase</u>: Start working on an engineering design for aspects of the TPC at ILC.

We are mostly in the phase 2. However, there are still important studies of the phase 1 left, and the phase 3 is now starting together with the new ILD group.

## The LC-TPC Collaboration



# The F-J Team

### The team

### FRANCE

- CEA/Dapnia Saclay
  - M. Chefdeville
  - <u>P. Colas</u>
  - D. Attie
  - A. Giganon
  - I. Giomataris
  - M. Riallot
  - F. Sénée
  - S. Turnbull
- CNRS/IN2P3 Orsay
  - (V. Lepeltier) (LAL)
  - Ph. Rosier (IPN)
  - T. Zerguerras (IPN)

JAPAN

- KEK/IPNS
  - K. Fujii
  - K. Ikematsu
  - M. Kobayashi
  - T. Matsuda
  - R. Yonamine
- Saga
  - (A. Aoza)
  - T. Higashi
  - H. Kuroiwa
  - A. Sugiyama
  - H. Tsuji
  - H. Yamaguchi

- Kinki U.
  - Y. Kato
  - T. Yazu
  - K. Hiramatsu
- Hiroshima U.
  - T. Takahashi
- Tokyo TUAT
  - M. Bitou
  - O. Nitoh
  - H. Ohta
  - K. Sakai
- Kogakuin
  - T. Watanabe
- Nagasaki
  - T. Fusayasu

### Activities -- The past (about) one year --

- K. Fujii participated in a TPC analysis "Jamboree" in Aix-la-Chapelle in March 2007
- P. Colas participated in FJPPL and did some work at KEK in May 2007
- T. Matsuda visited Saclay as an LC-TPC coordinator in May 2007
- P. Colas visited KEK and did some work on MPPCs for the trigger system in Nov. 2007
- P. Colas, M. Chefdeville, T. Matsuda, T. Fusayasu, H. Tsuji,
  R. Yonamine and K.Fujii participated in Tsinghua TPC School in Jan. 2008
- V. Lapeltier participated in TIL08 in March 2008
- T. Matsuda visited Saclay and summarized LC-TPC activity at DESY PRC in April 2008

Tsinghua TPC School Jan. 2008 in Beijing 2 French, 5 Japanese, and >40 Chinese





TU-TPC Test at KEK Cryocenter with a PC-Mag Dec. 2007

It's now becoming the F-J-C team!

## Small Prototype Tests

There have been many small prototype tests of which the KEK beam test of a micromegas TPC was worth special mention since an analytic formula was born from the beam test that clarified fundamental limitations to spatial resolution and decided the R&D directions for the LC-TPC.

## Two Mysteries

Generic behaviors of resolution with an MPGD endplate when the lateral avalanche spread is smaller than or comparable to the pad width



**Ionization Statistics** Ideal Readout Plane: Coordinate = Simple C.O.G. PDF for Center of gravity of N electrons  $P(\bar{x}) = \sum_{N=1}^{\infty} P_I(N;\bar{N}) \prod_{i=1}^{N} \left( \int dx_i P_D(x_i;\sigma_d) \right) \delta\left(\bar{x} - \frac{1}{N} \sum_{i=1}^{N} x_i \right)$ Ideal readout plane Gaussian diffusion  $P_D(x_i; \sigma_d) = \frac{1}{\sqrt{2\pi}\sigma_d} \exp\left(-\frac{x_i^2}{2\sigma_d^2}\right)$  $\mathcal{X}$  $\sigma_d = C_d \sqrt{z}$  $\sigma_{\bar{x}}^2 \equiv \int d\bar{x} P(\bar{x}) \, \bar{x}^2 = \sigma_d^2 \left\langle \frac{1}{N} \right\rangle \equiv \sigma_d^2 \frac{1}{N_{eff}}$  $N_{eff} \equiv 1/\langle 1/N \rangle < \langle N \rangle$ 

Gas Gain Fluctuation Coordinate = Gain-Weighted Mean PDF for Gain-Weighted Mean of N electrons  $P(\bar{x}) = \sum_{N=1}^{\infty} P_I(N;\bar{N}) \prod_{i=1}^{N} \left( \int dx_i P_D(x_i;\sigma_d) \int d(G_i/\bar{G}) P_G(G_i/\bar{G};\theta) \right) \delta\left(\bar{x} - \frac{\sum_{i=1}^{N} G_i x_i}{\sum_{i=1}^{N} G_i} \right)$ Gain-weighted mean Gaussian diffusion as before Gas gain fluctuation (Polya)  $\theta = \begin{cases} 0 : \exp \theta \\ \infty : \delta - \sin \theta \end{cases}$  $\mathcal{X}$  $P_{G}(G/\bar{G};\theta) = \frac{(\theta+1)^{\theta+1}}{\Gamma(\theta+1)} \left(\frac{G}{\bar{G}}\right)^{\theta} \exp\left(-(\theta+1)\left(\frac{G}{\bar{G}}\right)\right)$  $\sigma_{\bar{x}}^2 \equiv \int d\bar{x} P(\bar{x}) \, \bar{x}^2 = \sigma_d^2 \left\langle \frac{1}{N} \right\rangle \left\langle \left( \frac{G}{\bar{G}} \right)^2 \right\rangle \equiv \sigma_d^2 \frac{1}{N_{eff}}$  $N_{eff} = \left| \left\langle \frac{1}{N} \right\rangle \left\langle \left( \frac{G}{\bar{G}} \right)^2 \right\rangle \right|^{-1} = \frac{1}{\langle \frac{1}{N} \rangle} \left( \frac{1+\theta}{2+\theta} \right) < \langle N \rangle$ 

### Finite Size Pads

Coordinate = Charge Centroid

Charge on Pad j

Electronic noise  $\langle \Delta Q^2 \rangle = \sigma_E^2$  $Q_j = \sum_{i=1}^{N} G_i \cdot f_j(\tilde{x} + \Delta x_i) + \Delta Q'_j,$ i=1

Normalized response fun. for pad j

$$\sum_{i} f_j(\tilde{x} + \Delta x_i) = 1$$

Pad pitch

Charge Centroid

$$\bar{x} = \sum_{j} Q_j \left( \frac{\prime}{wj} \right) / \sum_{j} Q_j$$



PDF for Charge Centroid

 $P(\bar{x};\tilde{x}) = \sum_{N=1}^{\infty} P_I(N;\bar{N}) \prod_{i=1}^{N} \left( \int d\Delta x_i P_D(\Delta x_i;\sigma_d) \int d(G_i/\bar{G}) P_G(G_i/\bar{G};\theta) \right)$  $\times \prod_{j} \left( \int d\Delta Q_{j} P_{E}(\Delta Q_{j}; \sigma_{E}) \int dQ_{j} \delta \left( Q_{j} - \sum_{i=1}^{N} G_{i} \cdot f_{j}(\tilde{x} + \Delta x_{i}) - \Delta Q_{j} \right) \right)$  $1 imes \delta \left( \bar{x} - rac{\sum_{j} Q_{j} \left( wj \right)}{\sum Q_{j}} \right)$ 

## Full Analytic Formula

 $\sigma_{\bar{x}}^{2} \equiv \int_{-1/2}^{+1/2} d\left(\frac{\tilde{x}}{w}\right) \int d\bar{x} P(\bar{x};\tilde{x}) (\bar{x}-\tilde{x})^{2} = \int_{-1/2}^{+1/2} d\left(\frac{\tilde{x}}{w}\right) \left[ [A] + \frac{1}{N_{eff}} [B] \right] + [C]$ Purely geometric term  $[A] = \left(\sum_{i} (jw) \left\langle f_{j}(\tilde{x} + \Delta x) \right\rangle - \tilde{x}\right)$ Diffusion, gas gain fluctuation & finite pad pitch term  $[B] = \sum_{j,k} jkw^2 \left\langle f_j(\tilde{x} + \Delta x)f_k(\tilde{x} + \Delta x)\right\rangle - \left(\sum_j jw \left\langle f_j(\tilde{x} + \Delta x)\right\rangle\right)$  $\langle f_j(\tilde{x} + \Delta x) f_k(\tilde{x} + \Delta x) \rangle \equiv \int d\Delta x P_D(\Delta x; \sigma_d) f_j(\tilde{x} + \Delta x) f_k(\tilde{x} + \Delta x)$  $\langle f_j(\tilde{x} + \Delta x) \rangle \equiv \int d\Delta x P_D(\Delta x; \sigma_d) f_j(\tilde{x} + \Delta x)$ Electronic noise term 0  $[C] = \left(\frac{\sigma_E}{\bar{G}}\right)^2 \left\langle \frac{1}{N^2} \right\rangle \sum_{i} (jw)^2$ 

## Interpretation



[A] Purely geometric term (S-shape systematics from finite pad pitch): rapidly disappears as Z increases

[B] Diffusion, gas gain fluctuation & finite pad pitch term: scales as  $1/N_{eff}$ , for delta-fun like PRF asymptotically:

 $\sigma_x^2 \simeq \left(\frac{1}{N_{eff}} \left(\frac{w^2}{12} + C_d^2 z\right)\right)$ [C] Electronic noise term: Z-independent, scales as  $\langle 1/N^2 \rangle$ 

# Importance of the Analytic Formula

We can now analytically estimate the spatial resolution

drift distance  $\sigma_x = \sigma_x(z; w, C_d, N_{eff}, [f_j])$ pad pitch pad response function diffusion const. Effective No. track electrons Theoretical basis for how to improve the spatial resolution! Possible improvement of theory: angle effects

## Extrapolation to LC TPC



 Need to reduce pad size relative to PRF

#### MM + resistive anode

MM + digital pixel readout, ideal to avoid effect of gain fluctuation if feasible

 GEM with defocusing + narrow (~1mm) pads

### The 3 Solutions

The three solutions have been tested with small prototypes. --> demonstration phase We now need to test them with a larger prototype. --> consolidation phase

## Micro-TPC: MM+TimePix

Saclay/NIKHEF





Very powerful tool to study basic gas properties

D. Attie @ LPNHE, Mar. 2008

## Large Prototype Tests

Cosmic ray trigger counters with MPPC readout system

Endplate to house 7 Interchangeable readout modules

GEM+1mm pads, MM+RA, MM+TimePix

Field cage : 75 cm phi & 61 cm long Thin (0.2X0) superconducting magnet (PCMAG from KEK) : B\_max=1.25 T

### Consolidation Phase <u>TPC Large Prototype Beam Test at DESY</u>



**GEM** Solution

### **Detector Module: Double GEM with a gating GEM**

### Saga, Tsinghua

pod size ~1.1mm x 5.6mm

### (1) Double thick (100 $\,\mu$ m) GEM with a (thin) gating GEM:

#### (Gating GEM is not drawn)



# Micromegas with Resistive Anode

## Micromegas with R.A.

3 techniques to make resistive anode for the bulk MM

- Kapton foil laminated and covered with a resistive layer (Carleton)
   2 deposited layers of amorphous Si doped to adjust conductivity: 10<sup>4</sup> ohm cm on 10<sup>11</sup> ohm cm (Neuchatel)
- Screen printing of resistive pastes: 2-8M ohm/square (CERN)

#### Saclay, Carleton



### Micromegas with R.A. LP1 detector module

24 rows x 72 pads
 Av. pad size ~ 3.2x7 mm<sup>2</sup>





Micromegas with TimePix

# Micromegas with TimePix

EUDET

Saclay/NIKHEF





## Readout Electronics

### **TPC Readout Electronics: After Electronics**



In 2008 with one detector module This version is essentially ready by now except the mounting Structure on the endplate.



In 2009 with 7 detector modules. There is an option of the surface mounting of chips.

# Cosmic Ray Trigger Counters with MPPCs

### **Cosmic Ray Trigger Counters with MPPC for LP1**

Scintillator Slabs( from INR Moscow), MPPC (KEK) Preamp, Temp. control by Pelletier device and assembly (Saclay) Ready in May



### Summary

- We are busy preparing for the large prototype (LP1) beam test at DESY starting late this year.
- The LP1 data will be invaluable to prepare ourselves for the design phase.
- Hope we can show some LP1 data at the next FJPPL WS.
- We continue small prototype tests for
  - understanding of gas multiplication processes
  - optimization of gas mixtures
  - 🛛 gating, ....
- We continue more R&D for MM+TimePix since it is theoretically the best choice.