

First LHCb Results

Patrick Robbe, LAL Orsay, 6/01/2011

- <u>LHCb</u>: What is it, what makes it special and different from ATLAS/CMS?
- <u>Status</u>: Running experience from the first months of LHC operation
- <u>First physics</u>: Results from the 2010 data, published and preliminary
- <u>Discovery potential</u>: Plans for 2011 and beyond

Overview

"Indirect" Search for NP

- LHCb performs <u>precision measurements</u> of CP violating phases and rare heavy-quark hadron decays
- New Physics enters through contributions from virtual heavy particles in <u>loop-mediated processes</u>
- sensitivity to New Physics is highest in processes that are <u>strongly suppressed</u> <u>in the Standard Model</u>
- discovery potential for New Physics extends to mass scales <u>far in excess of</u> <u>the LHC centre-of-mass energy</u>
- pattern of observed deviations from Standard Model predictions will <u>hint at</u> <u>the nature of the New Physics</u>
- in continuation of long history of "indirect discoveries"
 - suppression of FCNC \rightarrow prediction of 2nd quark family
 - CP violation \rightarrow prediction of 3rd quark family
 - strong BB mixing \rightarrow prediction of large top-quark mass

New Physics in B decays

- explore FCNC processes with large sensitivity to New Physics, in particular b→s transitions
- improve measurements on CKM elements and challenge the Standard Model by overconstraining the unitarity triangles
- LHCb roadmap document: [arXiv:0912.4179v2 [hep-ex]]
 - tree-level determination of CKM angle $\boldsymbol{\gamma}$
 - charmless charged two-body B decays
 - B_s mixing phase ϕ_s from $B_s \rightarrow J/\psi \phi$
 - branching fraction of $B_s \rightarrow \mu^+ \mu^-$
 - angular distributions in $B^0 \rightarrow K^* \mu^+ \mu^-$
 - $B_s \rightarrow \varphi \gamma$ and other radiative decays

LHCb = Forward Spectrometer

- LHCb covers forward region: $1.9 < \eta < 4.9$
- optimized for the strongly forward peaked heavy quark production at the LHC
- covers only ~4% of solid angle but captures ~40% of heavy-quark production cross section

LHCb = "Day-1 Experiment"

- LHCb designed to operate at an instantaneous luminosity of 2 x 10³²cm⁻²s⁻¹
- corresponds to an average of 0.4 visible interactions per bunch crossing, maximizes fraction of single-interaction bunch crossings (for nominal operation with 2622 colliding bunches)
- single primary vertex: no ambiguity associating B decay vertex to its production vertex (required e.g. for time-dependent CP asymmetries)

 for several of LHCb's core measurements expect first significant results from 2010/2011 LHC run

LHCb Detector

LHCb = Optimized Trigger

- bb cross section is less than 1 % of the total inelastic cross section
- interesting B decay channels have typical branching fractions of 10⁻⁵
- exploit generic B decay signature: decay products with large p_T ("large" = few GeV) and high impact-parameter, well separated B decay vertex

<u>Hardware level (LO)</u>:

- high-p_{τ} <u>µ</u>, <u>e</u>, <u>y</u>, <u>or hadron</u> candidates
 - in muon system and calorimeters

Software level (HLT):

- multi-processor farm (14000 CPU cores)
- access to full detector data
- HLT1: cuts on impact parameter and lifetime
- HLT2: global event reconstruction
 + selections for specific channels

software trigger: flexible → adjust to running conditions

LHCb Running in 2010

• Extreme conditions compared to design:

	Nominal @ LHCb	2010
Number of colliding bunches	2622	344
Instantaneous luminosity	2x10 ³² cm ⁻² .s ⁻¹ (average)	1.7x10 ³² cm ⁻² .s ⁻¹ (max)
Normalized emittance	3.75 mm	2.4 mm
β*	30 m	3.5 m
μ (number of visible interaction per crossing)	0.4	2.5
pile-up	1 interaction/bb event	3.1 interactions/bb event
Integrated luminosity	2 fb ⁻¹ /year	37.7 pb ⁻¹

Data Taking & Running Conditions

- LHCb fully operational on first day of LHC collisions, running smothly since
- recorded 37.7 pb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$
- data taking efficiency > 90%

- at beginning of fill: up to more than 2.5 interactions per crossing on average
- significantly harsher conditions than design
 - multiple primary vertices
 - high occupancies, track multiplicities

- main limitation found: HLT reconstruction time for very busy events

Typical Event at $<\mu> = 2.5$

LHCb Event Display

Trigger

- trigger settings continuously adapted to rapidly increasing luminosity and changing running conditions.
- <u>early running (1)</u>: low intensity, small number of bunches:
 - minimum bias trigger, require single track in VELO.
- with increasing number of bunches and μ (2):
 - loose p_{τ} cuts at LO, start to use HLT, adjust settings to fully exploit available bandwidth and CPU.
- <u>at highest μ (3)</u>: give priority to muon triggers, reduce hadron trigger lines when needed:
 - increase cuts on transverse momentum / energy
 - *"global event cuts" on hit multiplicities to reject very busy events that require lots of CPU*
- trigger efficiencies determined on data using "tag-and-probe" methods
- results in good agreement with simulation

- (1) loose L0 cuts,
 - HLT in pass-through
- (2) L0 + HLT1
- (3) full LO-HLT1-HLT2

	Muon Trigger (J/ψ)	Hadron Trigger (D ⁰ , p _T >2.6 GeV)
Data	(94.9 ± 0.2) %	(60 ± 4) %
Simulation	(93.3 ± 0.2) %	66 %

Vertex Reconstruction

- excellent vertex resolution crucial for high-level triggers and most physics analyses
- VELO detectors inside LHC vacuum pipe
- only 8mm from beam during data taking
- retracted by ±3 cm at end of each fill, re-inserted when stable beams declared

• internal alignment better than 5 μ m, fill-to-fill variations also < 5 μ m

Tracking

- excellent momentum resolution for invariant mass resolution, rejection of combinatorial backgrounds
- spatial resolutions approaching values expected from simulation
- small differences remaining from residual mis-alignments
- note: no alignment from cosmics (acceptance too small)
- reconstruction efficiencies > 90 % for tracks above few GeV
- estimated using "tag-and-probe" methods on $K_s^{0} \rightarrow \pi^+\pi^-$

$\mu^+\mu^-$ Invariant Mass Resolutions

LHCb

19/39

Muon Identification Performance

- efficiency determined from data using tag-and-probe method on $J/\psi \rightarrow \mu^+\mu^-$
- found to be > 90 % for p > 10 GeV
- mis-ID probabilities K→μ, π→μ, p→μ
 determined from data using tag-and-probe
 method on φ → KK, K_s → ππ, Λ → pπ
- all found to be < 2 % for p > 10 GeV
- good agreement between data and simulation

K/π Identification

- crucial for flavour tagging and for separation of B decays with identical topology, e.g. $B^0 \rightarrow \pi^+\pi^- \leftrightarrow B^0 \rightarrow K^{\pm}\pi^{\mp} \leftrightarrow B_s \rightarrow K^+K^-$
- two RICH detectors with three radiators
- efficiencies and mis-ID determined from data using tag-and-probe methods on $\phi \rightarrow KK$, $K_s \rightarrow \pi\pi$, $\Lambda \rightarrow p\pi$

 performance found to be close to simulation over full momentum range from few GeV (tagging) to 100 GeV (two-body hadronic decays)

K/π Identification

- trigger on hadronic decay channels
- reconstruction of final states with e, γ , π^0
- π^0 resolution found in data even better than expected

First Physics

$p/\overline{p}, \Lambda^0/\overline{\Lambda^0}, \Lambda^0/K_s^0$ Ratios

- measure Baryon transport from beam particles to final state particles
 - at 900 GeV and at 7 TeV
 - as a function of rapidity y
 - as a function of transverse momentum
- measurements provide important input for Monte-Carlo tuning
- for comparison with previous experiments plot ratios as a function of $\Delta y = y - y_{beam}$
- agreement with previous measurements good
- conclusion for "Perugia 0" Pythia tune
 - describes p/p adequately at both energies
 - describes $\Lambda^0/\overline{\Lambda}^0$ poorly at 900 GeV
 - significantly underestimates Λ^0/K_s^0

Open Charm Cross-sections

- measure differential cross sections in bins of rapidity up to y = 4.5 and transverse momentum down to $p_T = 0$
- first measurement at $\sqrt{s} = 7 \text{ TeV}$
- large uncertainties on theory predictions
- use impact parameter to reject "D from B"
- separate measurements for D^0 , D^{*+} , D^+ , D_s^+
- results agree well with expectation

bb Cross Section: $B^0 \rightarrow D^0 \mu^- \nu X^+$

reconstruct D⁰ in K⁻ π⁺ decay mode

LHC

- reconstruct $D^0 \mu^-$ pairs from a common vertex
- select "D from B" by large impact parameter
- use wrong-sign $D^0 \mu^+$ pairs to estimate backgrounds

- published result based on ~15 nb⁻¹ [PLB 694 (2010) 209, arXiv:1009.2731v2 [hep-ex]]
 - within LHCb acceptance $2 < \eta(H_b) < 6$

 $\sigma (pp \rightarrow H_b X) = (75 \pm 5.4 \pm 13) \ \mu b$

- using Pythia to extrapolate to full phase space $\sigma (pp \rightarrow b\bar{b}X) = (284 \pm 20 \pm 49) \mu b$ good agreement with theory predictions; LHCb performance studies 250 µb

bb Cross Section: $B^0 \rightarrow D^0 \mu^- \nu X^+$

Average cross-section to produce a b or \overline{b} hadron:

$$\sigma(pp \to H_b X) = \frac{\# \text{ of detected } D^0 \mu^- \text{ and } \overline{D}^0 \mu^+ \text{ events}}{2\mathcal{L} \times \text{ efficiency } \times \mathcal{B}(b \to D^0 X \mu^- \overline{\nu}) \mathcal{B} \left(D^0 \to K^- \pi^+ \right)}$$

Very good agreement in absolute value and η shape with 2 theories:

- MCFM [Monte Carlo for FeMtobarn processes, Nason, Dawson, Ellis, http://mcfm.fnal.gov], NLO with MSTW8NL PDF.
- CNFMR [Cacciari, Frixione, Mangano, Nason, Ridolfi, JHEP 0407 (2004) 33], FONLL with CTEQ6.5 PDF.

- $J/\psi \rightarrow \mu^{+} \mu^{-}$
- Preliminary results based on early data (14nb-1) shown at ICHEP

J/ψ cross-section measurement

- New measurement released in December, with 5pb⁻¹, to be published in January 2011.
- Measure separately:
 - Prompt J/ ψ (direct J/ ψ + J/ ψ from χ_c feeddown)
 - J/ψ from *b* decays,
- Using to separate them:

 $t_z(J/\psi) = \frac{d_z \times M_{J/\psi}}{p_z}$

• Total bb cross-section:

$$\sigma(pp \to b\overline{b}X) = 295 \pm 4 \pm 48\,\mu\text{b}$$

 d_{z}

J/ψ cross-section measurement

• Differential cross-sections in 70 bins (p_T and rapidity, y)

Prospects for 2011 Physics Results (1fb⁻¹)

- <u>From detector point of view</u>:
 - Trigger Computer Farm for HLT will be upgraded to reach 1500 CPU nodes, additional data links will be needed to increase current bandwidth.
 - LHCb has been designed to run for 10 years at 2-5x10³² cm⁻².s⁻¹: limit of the instantaneous luminosity that the detectors can support to have stable operation.
- <u>From trigger point of view</u>:
 - Global event cuts have a large price on luminosity when μ is high.
 - Crucial to improve CPU time consumption per event in the HLT.
- <u>From analysis point of view</u>:
 - No significant gain when μ >2.5.
- <u>LHCb future running strategy</u>:
 - Maximum instantaneous luminosity: 5x10³² cm⁻².s⁻¹
 - Maximum μ of 2.5
 - Propose LHC to displace beams to reduce luminosity at beginning of fill and to readjust them to follow beam lifetime.

CP Violation in $B \rightarrow K\pi$

- separate into B^0 and \overline{B}^0 using particle ID
- raw asymmetry shows direct CP Violation at 3σ
- central value consistent with world average
- careful: small corrections from production and detector asymmetry not yet corrected for

- charmless two-body B-decay modes central to LHCb physics programme
- significant contribution of Penguin diagrams → window to New Physics !

CKM angle y

- most difficult to measure and therefore least well constraint by direct measurement
- requires LHCb key features
 - large number of B's
 - trigger on hadronic states
 - excellent π/K separation

<u>v</u> from penguins: time-dependent CP asymmetries in $B^0 \rightarrow \pi^+ \pi^-$ and $B_s \rightarrow K^+ K^-$

- clear signals from first data
- measured rates match simulation
- $\mu_{s} = 5.3612 \pm 0.0020 \text{ GeV/c}^{2}$ $\mu_{\rm c} = 5.2762 \pm 0.0010 \, \text{GeV/c}^2$ LHCb LHCb $\sigma = 0.02300 \pm 0.00090 \text{ GeV/c}^2$ $\sigma = 0.02300 \pm 0.00090 \text{ GeV/c}^{2}$ Preliminary Preliminary $v_{\kappa\kappa} = 254 \pm 20$ v = 229 ± 23 120 √s = 7 TeV Data √s = 7 TeV Data 20 5.2 5.3 5.3 5.4 5.7 5.1 5.2 5.5 5.6 5.6 Invariant mass (GeV/ Invariant mass (GeV/c²)
- expect to reach $\sigma(\gamma) \approx 7^{\circ}$ from 2 fb⁻¹ \rightarrow beyond 2010/11 run

5.7

γ from Trees

- measure rates $B^{\pm} \rightarrow D^{0}(\overline{D}^{0}) K^{\pm} \rightarrow f K^{\pm}$
- interference of tree amplitudes if final state f is common to D⁰ and D⁰:
 - GLW: f = KK, ππ (CP Eigenstates)
 - ADS: $f = K^+ \pi^- (D^0 \text{ decay suppressed})$
 - GGSZ: $f = K_s \pi \pi$ (Dalitz decays)
- clean signals from first data
- rates match expectation
- expected LHCb event yields for 1 fb⁻¹:

B ⁻ → D(KK) K ⁻	2000
B ⁻ → D(ππ) K ⁻	750
$B^{-} \rightarrow D(K\pi) K$ (favoured)	20000
$B^{-} \rightarrow D(K\pi) K$ (suppressed)	400

• expected reach with 1 fb⁻¹: $\sigma(\gamma) \approx 8^{\circ}$

ϕ_{s} from $B_{s} \rightarrow J/\psi \phi$

- $B_s\overline{B}_s$ mixing phase ϕ_s : small in the Standard Model, can be enhanced by New Physics
- some hints from CDF/D0 but not significant
- "golden channel" for measurement of ϕ_s : time-dependent CP asymmetry in $B_s \rightarrow J/\psi \phi$
- requires large statistics for angular analysis to separate CP even and CP odd final states
 - expect 35000 selected events from 1 fb⁻¹
- requires flavour tagging to tag initial B_s
- requires excellent proper-time resolution to resolve fast $B_s \overline{B}_s$ oscillation ($\Delta m_s = 17.8 \text{ ps}^{-1}$)
- currently ~60 fs where 38 fs expected
 investigation of possible causes ongoing
 - would imply 20 % reduction in sensitivity

$B_s \rightarrow \mu^+ \mu^-$

- one of the early benchmark channels
- very rare FCNC decay in Standard Model BR $(B_s \rightarrow \mu^+ \mu^-) = (3.6 \pm 0.4) \times 10^{-9}$
- can be significantly enhanced by New Physics
- best upper limits from CDF/D0 ~ 10 x SM
- already cutting into New Physics parameter space
- use 3-dim binned likelihood to isolate signal
 - invariant mass of muon pair
 - muon-ID
 - Geometrical Likelihood (lifetime, IP, DOCA...)
- use control channels to calibrate likelihoods from data: $J/\psi \rightarrow \mu^+\mu^-$, $B^0 \rightarrow K^+\pi^-$, $B_s \rightarrow K^+K^-$
- approach current CDF/D0 limits with 2010 data
- with 1 fb⁻¹ expect 5 σ detection if BR \approx 5 x BR_{SM}

Conclusions

• LHCb has a unique potential for the

INDIRECT DISCOVERY

of New Physics

- the experiment is performing very well, under harsher conditions than it was designed for
- the good agreement between simulation and early measurements indicates that estimated physics reaches seem realistic
- in some areas we are already getting close to being competitive with exisiting results