UNIVERSAL EXTRA DIMENSIONS ON THE REAL PROJECTIVE PLANE Model and phenomenology

Luca Panizzi IPN Lyon, France

- Universal extra-dimensions and the 5D case
- 6D on the Real Projective Plane
- Unitarity: the cutoff of the model
- Phenomenology of the model

Universal Extra Dimensions

All SM fields can propagate in the full D-dimensional background

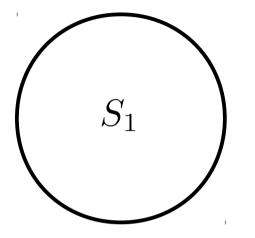
Assumption: flat metric

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} - \delta_{ab}dy^a dy^b$$

How many extra-dimensions?

How to compactify such extra-dimensions?

5-Dimensional Model



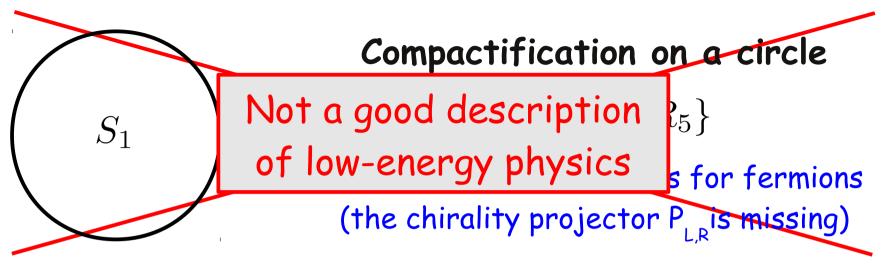
Compactification on a circle

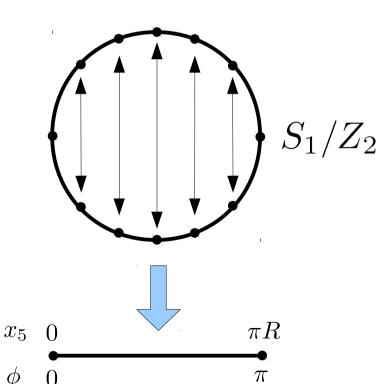
 $x_5 \in \{0, 2\pi R_5\}$

Non-chiral 4D zero modes for fermions (the chirality projector $P_{I,R}$ is missing)

5-Dimensional Model Compactification on a circle S_1 Not a good description S_5 of low-energy physics for fermions (the chirality projector $P_{L,R}$ is missing)

5-Dimensional Model





Compactification on an interval (orbifold)

Identification of opposite points

Zero mode chiral Fermions

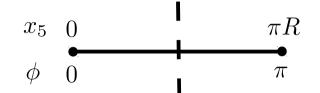
5-Dimensional Model KK parity

Discrete symmetry about the midpoint

It is a remnant of 5D continuous translational invariance:

$$x_5 \to x_5 + \pi R \rightarrow (-) \longrightarrow x_5 \to \pi R - x_5$$

5-Dimensional Model KK parity



Discrete symmetry about the midpoint

It is a remnant of 5D continuous translational invariance:

KK-parity imposed by hand on the fixed points

orbifold without fixed points

so that

KK parity unbroken globally

then

Natural Dark Matter candidate

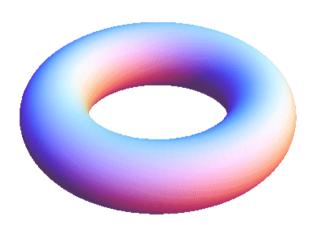
Is it possible?

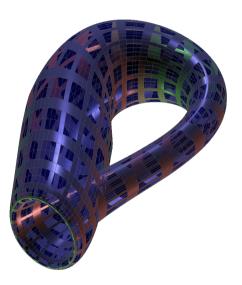
- Universal extra-dimensions and the 5D case
- 6D on the Real Projective Plane
- Unitarity: the cutoff of the model
- Phenomenology of the model

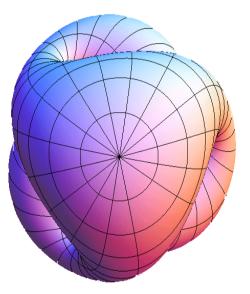
6-Dimensional Orbifolds

17 possible ways to orbifold the extra **R**²

Only 3 of them are **WITHOUT** fixed points or lines







Torus

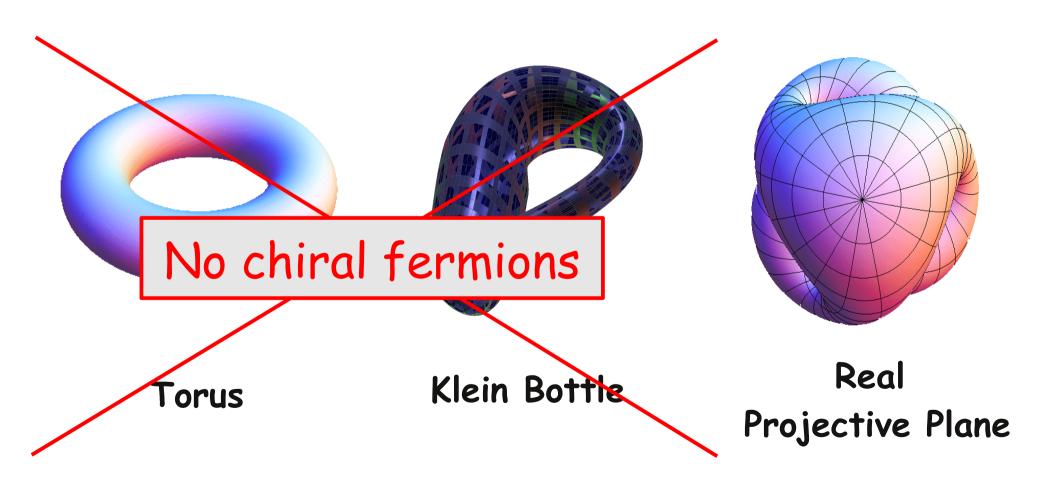
Klein Bottle

Real Projective Plane

6-Dimensional Orbifolds

17 possible ways to orbifold the extra **R**²

Only 3 of them are **WITHOUT** fixed points or lines



6D on the Real Projective Plane

Mathematical definition $\mathbf{R}/\mathbf{pgg} \implies \mathbf{pgg} = \langle r, g | r^2 = (g^2 r)^2 = 1 \rangle$

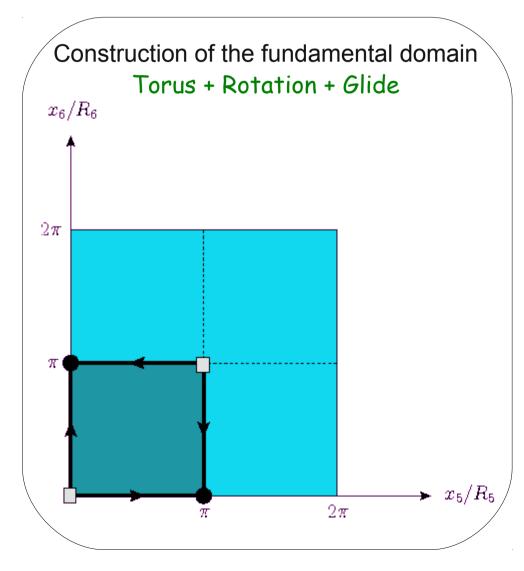
glide
$$g: \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim -x_6 + \pi R_6 \end{cases}$$

rotation
$$r: \begin{cases} x_5 \sim -x_5 \\ x_6 \sim -x_6 \end{cases}$$

The rotation has 4 fixed-points (0,0) (π,π) $(0,\pi)$ $(\pi,0)$ The glide identifies them in pairs $(0,0) \rightarrow (\pi,\pi)$ $(0,\pi) \rightarrow (\pi,0)$

No fixed points!

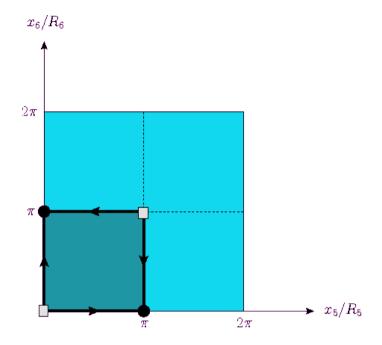
Only 2 conical singularities where local interactions can be added



KK-parity and Dark Matter

A discrete symmetry is left unbroken even on the singular points!!

$$p_{KK} : \begin{cases} x_5 \sim x_5 + \pi R_5 \\ x_6 \sim x_6 + \pi R_6 \end{cases}$$



Fields on the RPP can be KK expanded into combinations of sines and cosines:

e.g.
$$\cos(k(x_5 + \pi R_5))\sin(l(x_6 + \pi R_6)) = (-1)^{(k+l)}\cos(kx_5)\sin(lx_6)$$

Modes can be classified by their parity under KK symmetry Odd KK modes can only be produced in pairs

The lightest KK tiers (k,l)=(0,1) and (1,0) contain a NATURAL Dark Matter candidate

- Universal extra-dimensions and the 5D case
- 6D on the Real Projective Plane
- Unitarity: the cutoff of the model
- Phenomenology of the model

Unitarity in extra-dimensions

Pure Yang-Mills theory

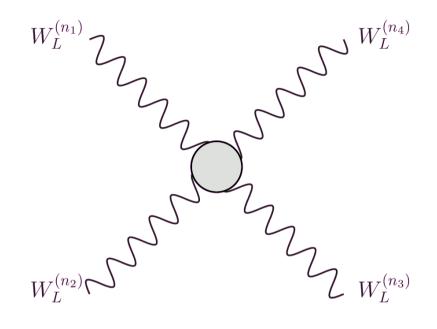
Infinite tower of KK modes

Finite terms in the amplitude, which grow with energy

Extra-dimensional theories are not renormalizable Unitarity will be broken at energies comparable to the cutoff of the theory

Unitarity constraints are a powerful tool to determine the cutoff

The Unitarity Matrix



Generic Process

 $W_L(n_1)W_L(n_2) \to W_L(n_3)W_L(n_4)$

 $E \gtrsim m_1 + m_2 = \frac{n1+n2}{R}$

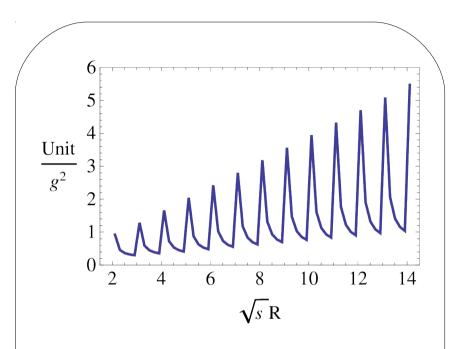
 $T_{n_1 n_2 \to n_1 n_2}$

Only elastic channel

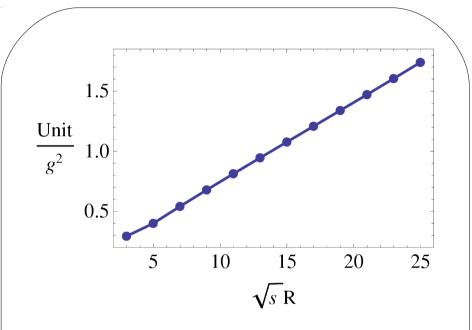
 $E \gtrsim m_3 + m_4 \gg m_1 + m_2$

 $= \begin{cases} T_{n_1n_2 \to n_1n_2} \\ T_{n_1n_2 \to n_3n_4} \\ T_{n_3n_4 \to n_1n_2} \\ T_{n_3n_4 \to n_3n_4} \end{cases} & \text{Many different processes} \\ \text{are allowed} \end{cases}$

Unitarity in 5D



Threshold effects are relevant, but they can be safely taken into account with a proper analysis



Taking the points just below thresholds the unitarity parameter grows **linearly** with the energy

Fitting the linear behaviour $(g=g_{ew}(M_Z))$

Unitarity in 6D on the RPP

2 KK indices (k,l)

The number of open channels increases <u>very rapidly</u> with energy!

\sqrt{s}	5D	6D	
$2M_{KK}$	1×1	4×4	
$3M_{KK}$	3×3	17 imes 17	Challenge for the computation
$4M_{KK}$	6×6	49×49	of the eigenvalues
$5M_{KK}$	10×10	107 imes 107	
$6M_{KK}$	15×15	226×226	

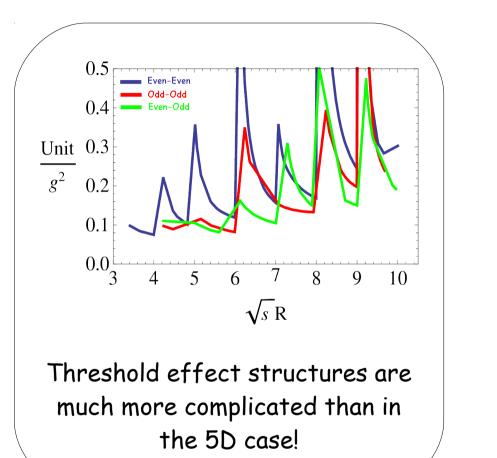
Conservation of extra-dimensional momentum in both coordinates

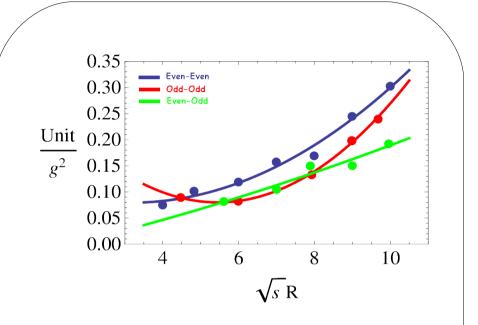
4 independent submatrices

$$l_1 \pm l_2 | = |l_3 \pm l_4| \longrightarrow \begin{cases} \text{even} \to \text{even} \\ \text{odd} \to \text{odd} \end{cases}$$

$$\begin{aligned} &|l_1 \pm l_2|_{\text{even}}, |k_1 \pm k_2|_{\text{even}} \\ &|l_1 \pm l_2|_{\text{odd}}, |k_1 \pm k_2|_{\text{odd}} \\ &|l_1 \pm l_2|_{\text{even}}, |k_1 \pm k_2|_{\text{odd}} \\ &|l_1 \pm l_2|_{\text{odd}}, |k_1 \pm k_2|_{\text{even}} \end{aligned}$$

Unitarity in 6D on the RPP





Taking the points below threshold in the four independent configurations the behaviour is **quadratic**

Fitting the quadratic behaviour $(g=g_{ew}(M_Z))$

- Universal extra-dimensions and the 5D case
- 6D on the Real Projective Plane
- Unitarity: the cutoff of the model
- Phenomenology of the model

The Spectrum of the Model

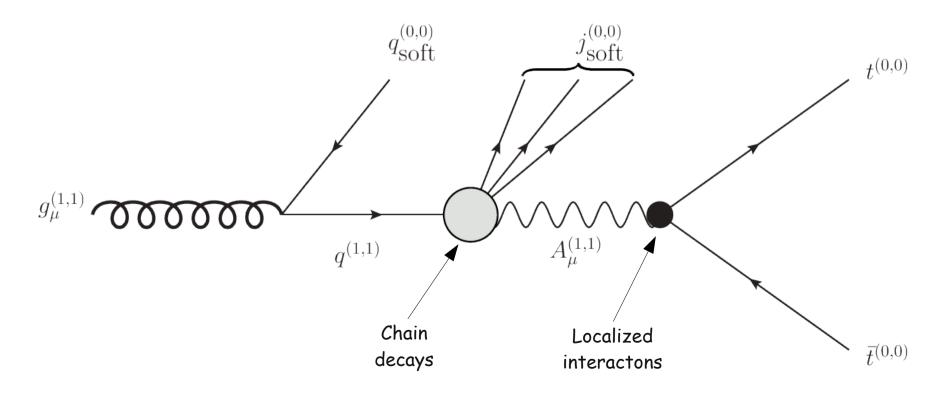
Levels	Mass	P _{KK} =(-1) ^{I+k}	Gauge Vectors (A,W,Z,g) ^µ	Gauge Scalars (A,W,Z,g) ^{5,6}	Fermions	Higgs
(0,0)	0	Ŧ		×	(chiral)	
(1,0) (0,1)	1/R	-	×		(Dirac)	×
(1,1)	√2/R	Ŧ			(Dirac)	
(2,0) (0,2)	2/R	Ŧ		×	(Dirac)	•
(2,1) (1,2)	√5/R	_			(Dirac)	•

The Spectrum of the Model

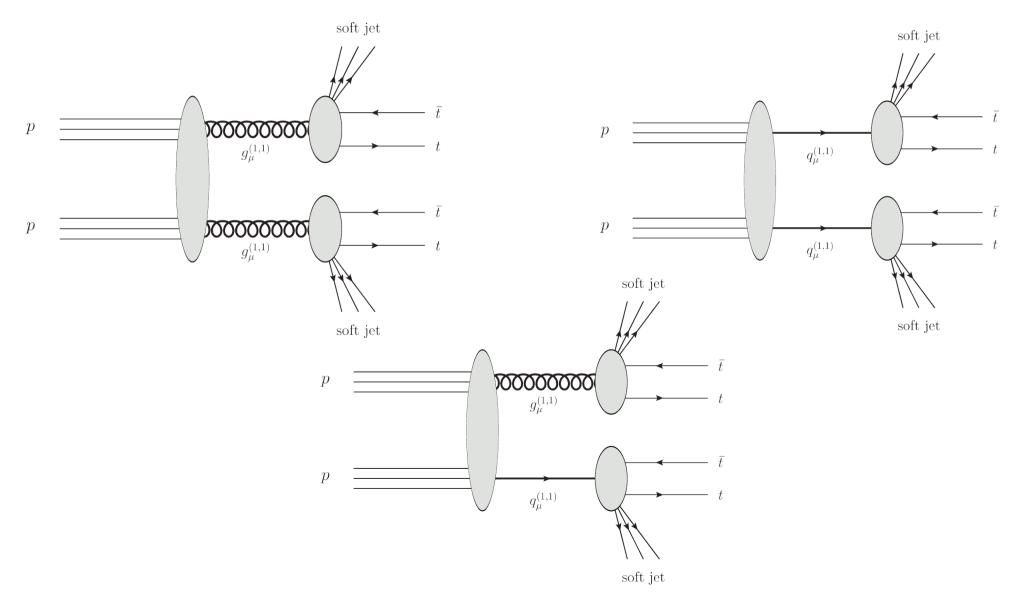
Levels	Mass	P _{KK} =(-1) ^{I+k}	Gauge Vectors (A,W,Z,g) ^µ	Gauge Scalars (A,W,Z,g) ^{5,6}	Fermions	Higgs
(0,0)	0	+		×		
(1,0) (0,1)	1/R	-	×			×
(1,1)	√2/R	+		~	~	~

(1,1) particles can decay directly into SM states through localized interactions which mix different levels

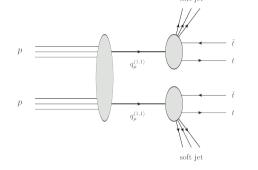
Interesting signature



At the LHC it will be possible to pair-produce (1,1) gluons or quarks and obtain a final state containing 4 tops + soft jets



At the LHC it will be possible to pair-produce (1,1) gluons or quarks and obtain a final state containing 4 tops + soft jets



soft jet

$$\sigma_{qq} = 7.247 \pm 0.012 (pb) @ 7TeV$$

$$\sigma_{gq} = 5.614 \pm 0.007 (pb) @ 7TeV$$



How can we see this signal at the LHC?

$$pp \rightarrow 2t + 2\bar{t} \rightarrow 4b\text{-jets} + 4W \rightarrow \begin{cases} 0l + 4b\text{-jets} + 8 \text{ jets} \\ 1l + 4b\text{-jets} + 6 \text{ jets} \\ 2l + 4b\text{-jets} + 4 \text{ jets} \\ 3l + 4b\text{-jets} + 2 \text{ jets} \\ 4l + 4b\text{-jets} \end{cases} + E_T + \text{jet}_{\text{soft}}$$

How can we see this signal at the LHC?

$$pp \rightarrow 2t + 2\bar{t} \rightarrow 4b\text{-jets} + 4W \rightarrow \begin{cases} 0l + 4b\text{-jets} + 8 \text{ jets} \\ 1l + 4b\text{-jets} + 6 \text{ jets} \\ 2l + 4b\text{-jets} + 4 \text{ jets} \\ 3l + 4b\text{-jets} + 2 \text{ jets} \\ 4l + 4b\text{-jets} \end{cases} + E_T + \text{jet}_{\text{soft}}$$

Main backgrounds

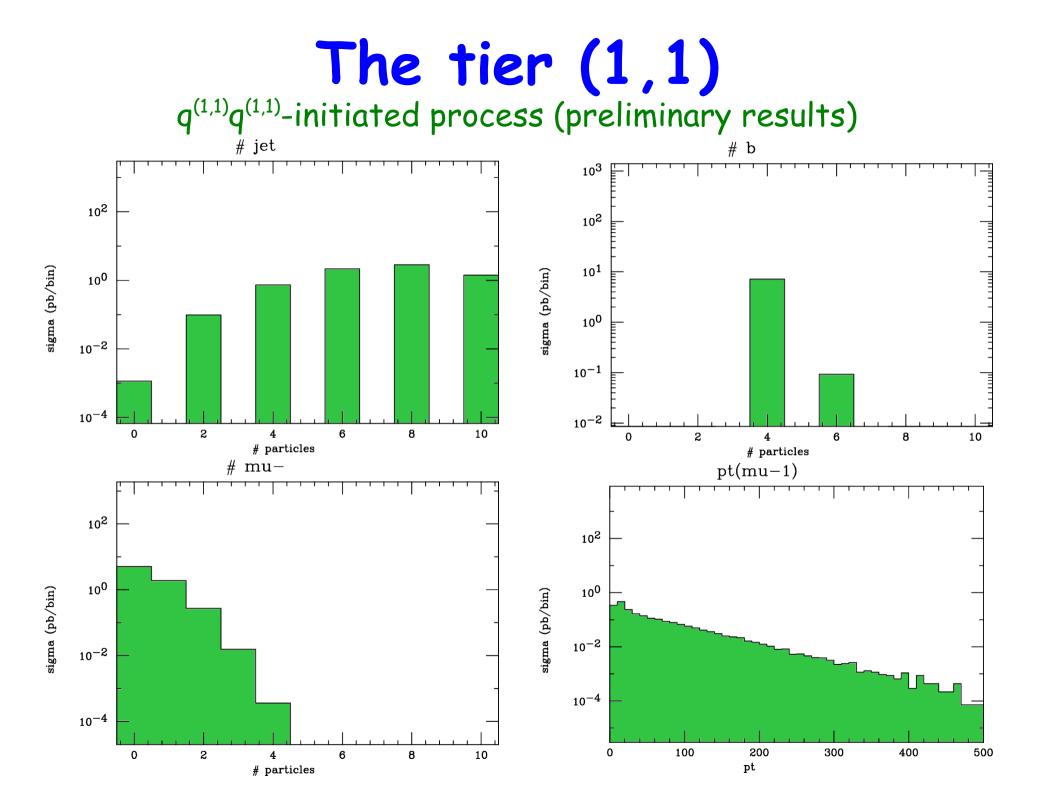
 $\sigma_{pp\to 4t}^{SM} \lesssim 1 f b$

Standard Model cross section is negligible

Misidentification is the main problem. Need to compute processes such as

$$pp \rightarrow \begin{cases} ZZ + \text{jets} \\ WW + \text{jets} \\ t\bar{t} + \text{jets} \end{cases}$$

Work in progress with CMS group in Lyon...



Universal Extra-dimensions can accommodate a Dark Matter candidate through conservation of KK parity

Universal Extra-dimensions can accommodate a Dark Matter candidate through conservation of KK parity

> In **5D** KK parity must be imposed **by hand** on the **fixed points** of the orbifold

In 6D only three orbifolds without fixed points/lines but chiral zero mode fermions only on the Real Projective Plane

Universal Extra-dimensions can accommodate a Dark Matter candidate through conservation of KK parity

> In **5D** KK parity must be imposed **by hand** on the **fixed points** of the orbifold

In 6D only three orbifolds without fixed points/lines but chiral zero mode fermions only on the Real Projective Plane

Interesting phenomenology at LHC with peculiar signals from the next-to-lightest, KK-even **tier (1,1)**

Work in progress...

Gauge-Higgs Unification

various possibilities already analyzed but complete computation of unitarity bounds in progress

> **Phenomenology** of heavier tiers (2,0) and (2,1)

Computation of additional bounds on localized operators from Electroweak Precision Tests Backup...

More than four Dimensions

Infinite or Compact?

Infinite

Just like ordinary dimensions, but one must explain why SM fields are confined to 4D at low energy

	" $x_{5,6,}$ " are limited to a finite interval {0,2 π R _{5,6,} }:
Compact	effective 4D theory up to distance scales
	of the order of the compactification radii R _{5,6,}

Assumption: extra dimensions are compact!

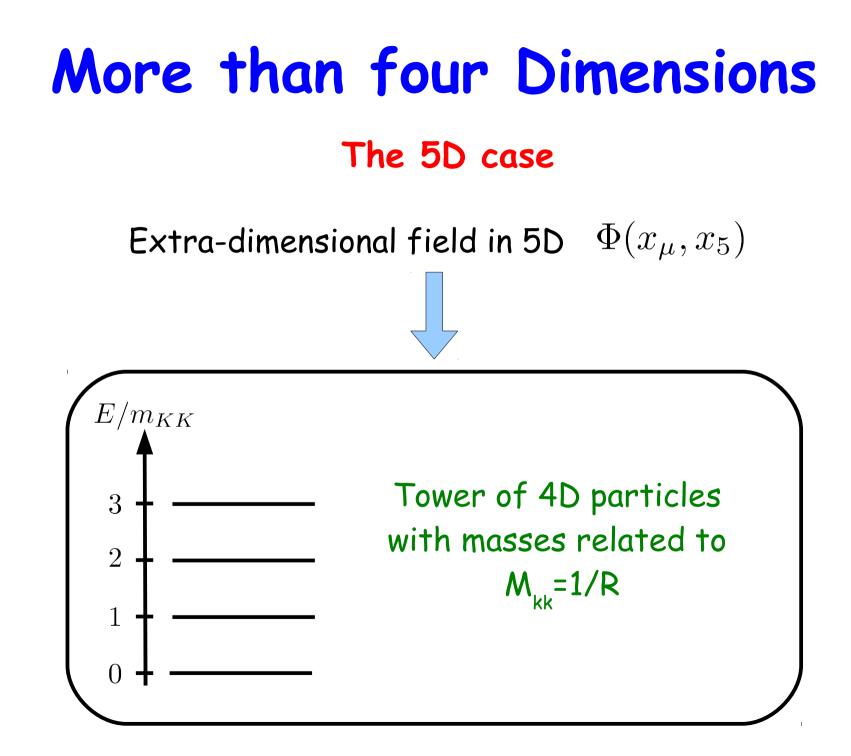
More than four Dimensions

A field that propagates in D dimensions can be Fourier-expanded

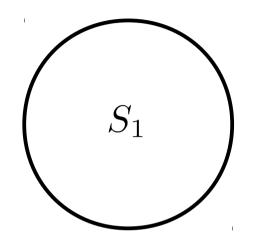
$$\Phi(x_{\mu}, x_5, x_6, \dots) = \sum_{k_5, k_6, \dots} \phi^{(k_5, k_6, \dots)}(x_{\mu}) e^{i\left(\frac{k_5}{R_5}x_5 + \frac{k_6}{R_6}x_6 + \dots\right)}$$

Compact space \longrightarrow Discrete sum

From quadri-momentum to D-momentum: $\tilde{p} = (p_{\mu}, p_5, p_6, ...)$



5-Dimensional Model



Compactification on a circle

 $x_5 \in \{0, 2\pi R_5\}$

Fermions

Clifford Algebra in 5D contains the 4 Dirac matrices and the γ_5 :

$$\{\Gamma_M,\Gamma_N\}=2\eta_{MN}$$
 with $\Gamma_\mu\equiv\gamma_\mu,\Gamma_5\equiv-i\gamma_5$

KK expansion

Fermions are 4-component Dirac spinors

Non-chiral 4D zero modes

Not a good description of low-energy physics!

5-Dimensional Model

 S_1/Z_2

 πR

 π

 x_5

0

Compactification on an interval (orbifold)

Identification of opposite points

Orbifold and parity of fermions $P(x_5) = -x_5$ $\Phi(x^{\mu}, -x_5) = P(\Phi)(x^{\mu}, x_5)$ Invariance of the action requires: $P(\Psi_L) = +\Psi_L$ $P(\Psi_R) = -\Psi_R$

$$\Psi_L(x,x_5) \sim \sum_{n=0}^{\infty} \psi_L^{(n)}(x) \cos(\frac{n}{R}x_5) \qquad \Psi_R(x,x_5) \sim \sum_{n=1}^{\infty} \psi_R^{(n)}(x) \sin(\frac{n}{R}x_5)$$
No n=0 R-fermions

Zero mode chiral Fermions

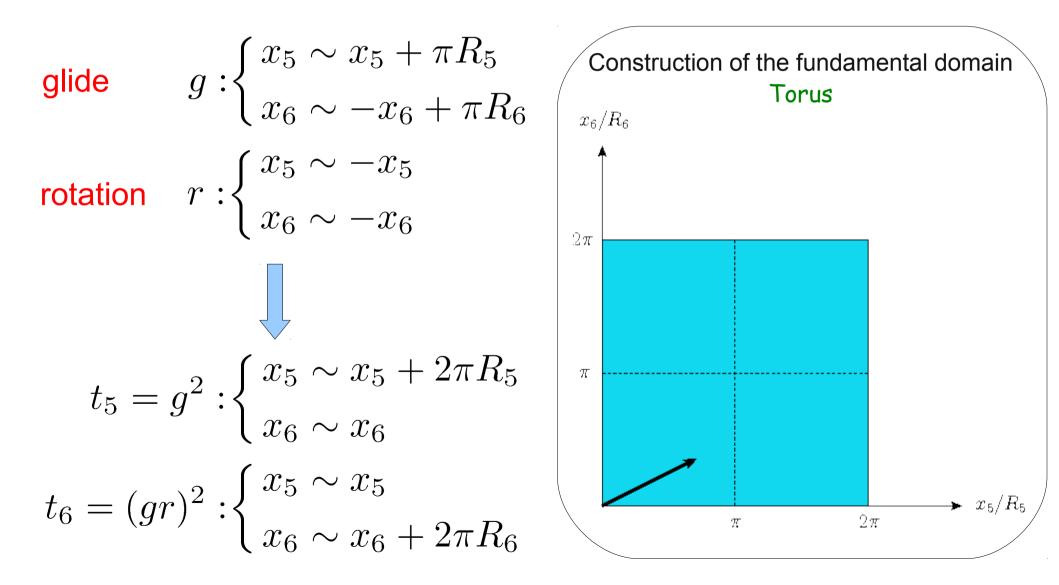
5-Dimensional Model KK parity

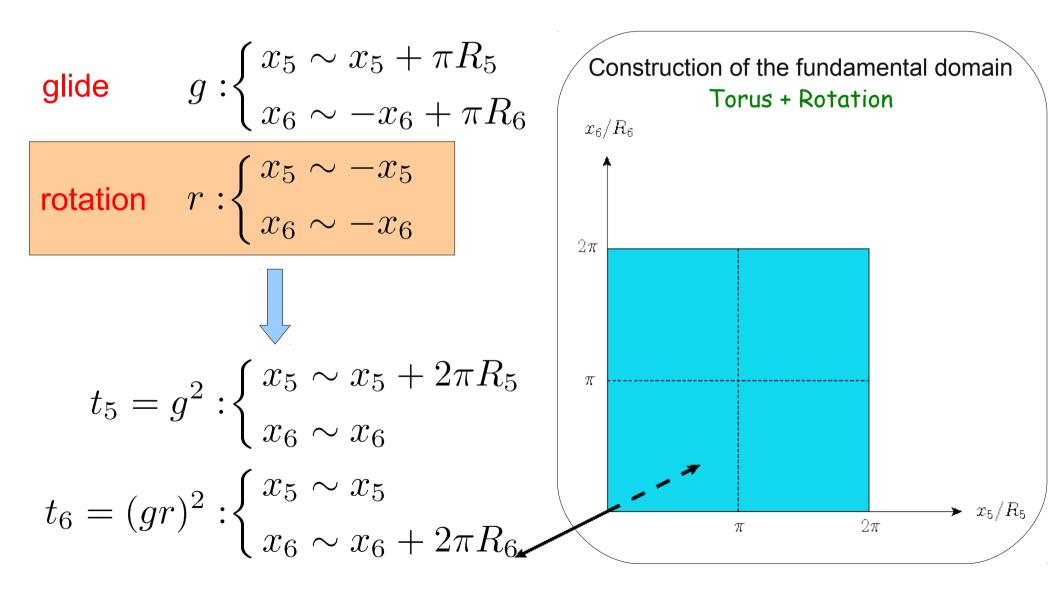
Discrete symmetry about the midpoint

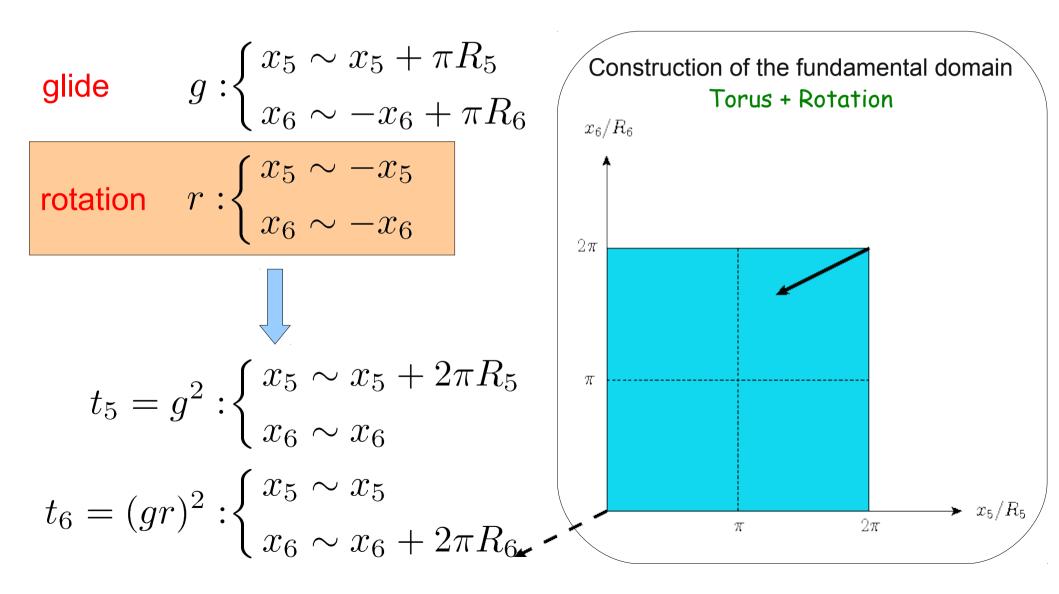
It is a remnant of 5D continuous translational invariance:

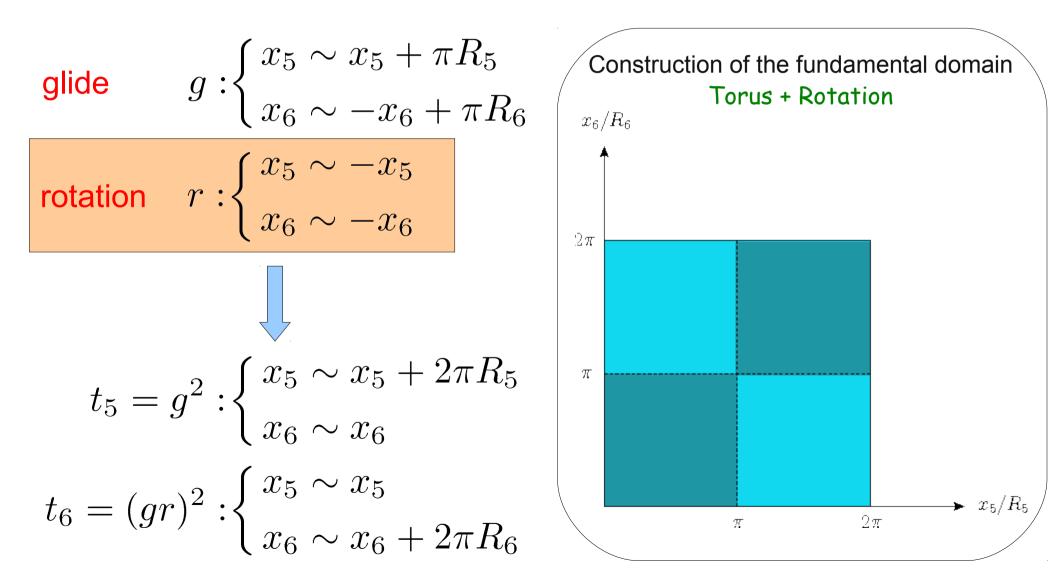
$$x_5 \to x_5 + \pi R \quad \longrightarrow \quad (1 \to 1)^n \quad (1 \to 1$$

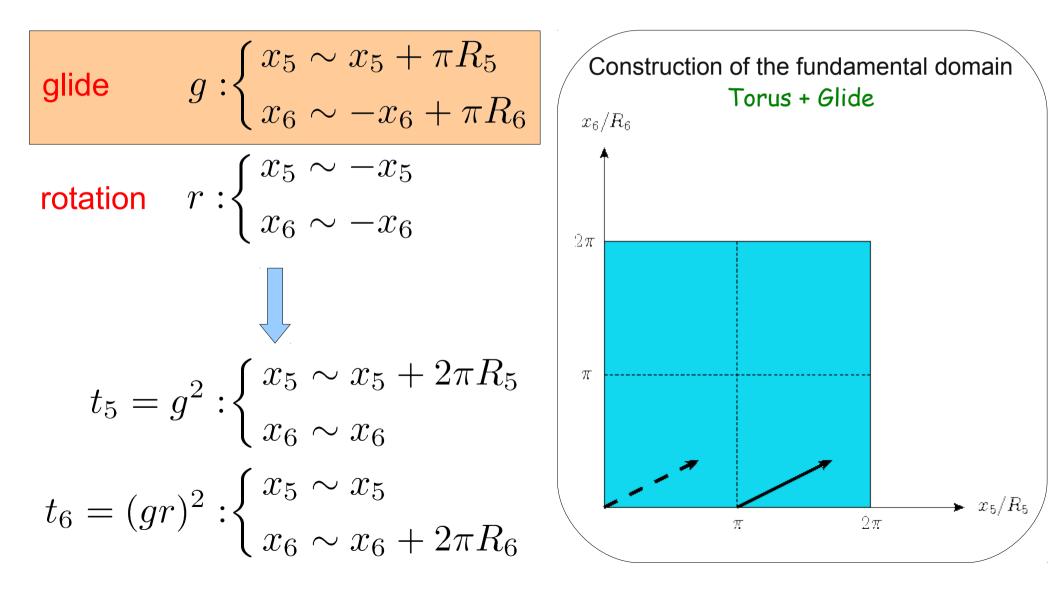
The lightest KK-odd level is stable

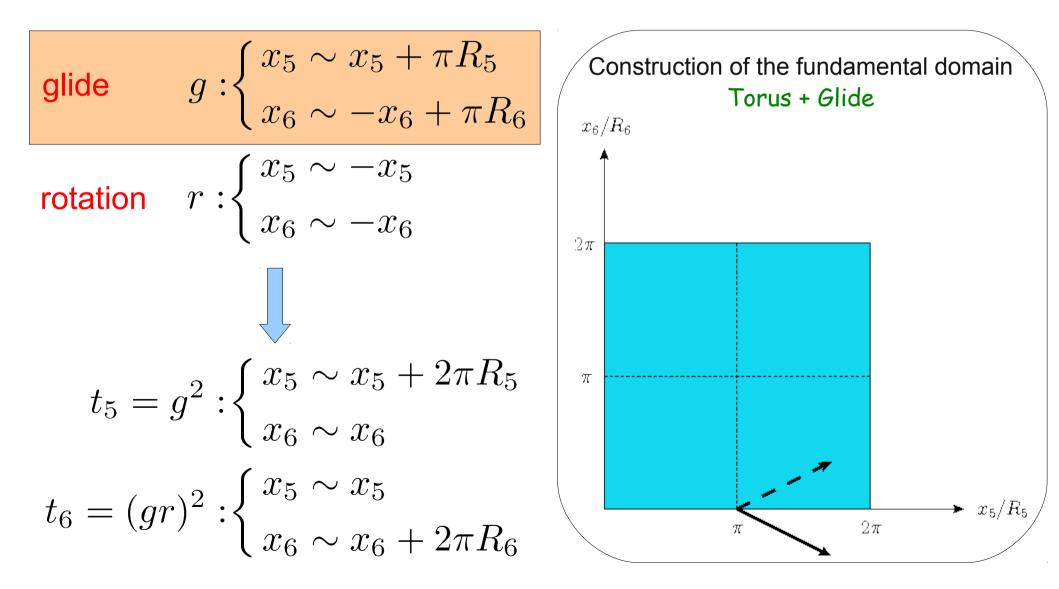


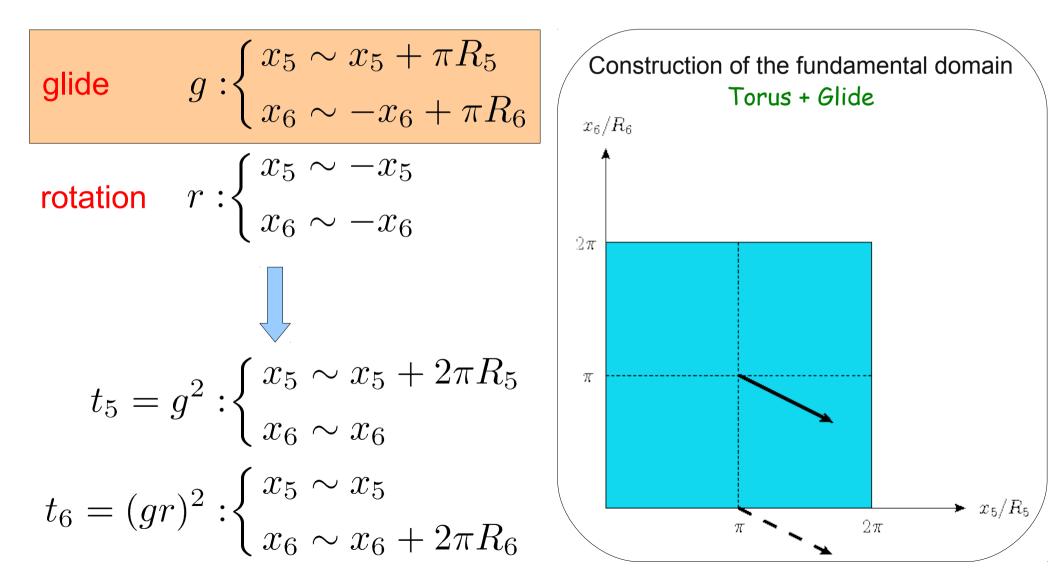


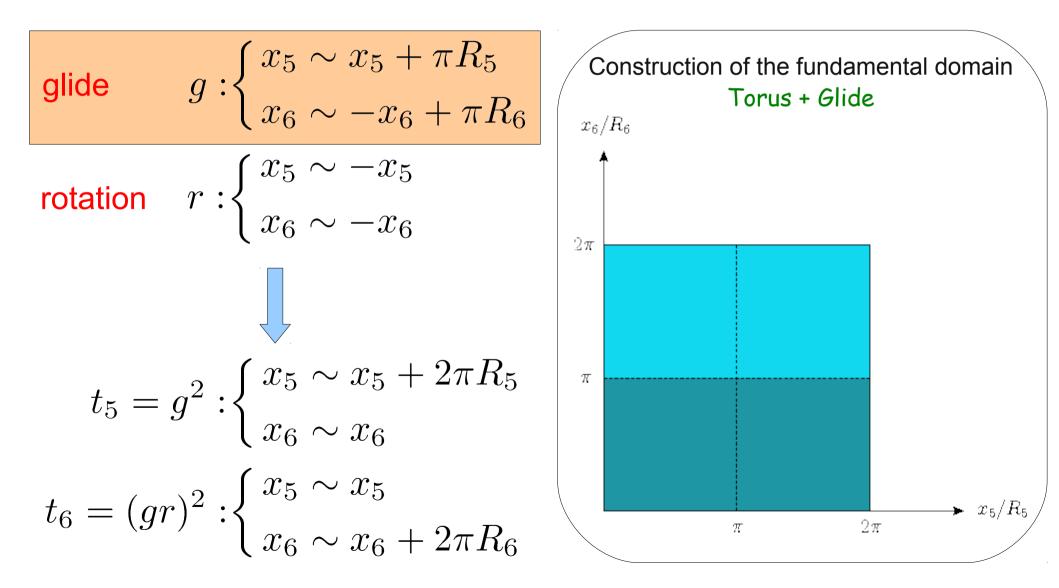


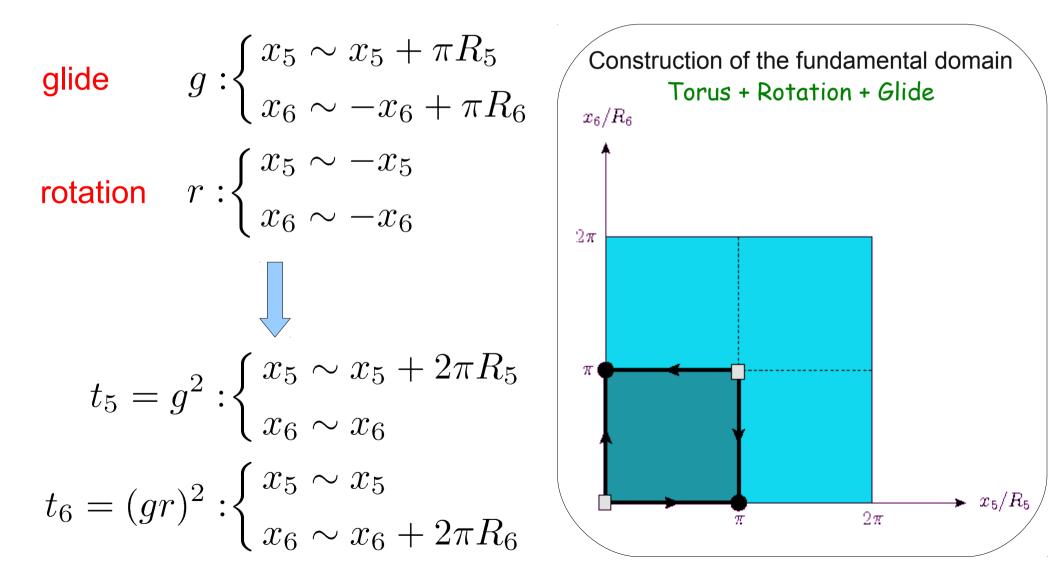












$$S_{\text{scalar}} = \int_0^{2\pi} dx_5 dx_6 \left\{ \partial_\alpha \Phi^\dagger \partial^\alpha \Phi - M^2 \Phi^\dagger \Phi \right\} \quad R_5 = R_6 = 1$$

The general solutions of the equation of motion are given by:

$$\Phi = \sum_{k,l} \phi^{(k,l)} (A \cos kx_5 \cos lx_6 + B \sin kx_5 \sin lx_6 + C \sin kx_5 \cos lx_6 + D \cos kx_5 \sin lx_6)$$

The modes can be characterized by their parities under rotation and glide:

	p_r	p_g	$\left(\cos(kx_5)\cos(lx_6) \xrightarrow{r} \cos(-kx_5)\cos(-lx_6)\right)$
$\cos kx_5 \ \cos lx_6$	+	$(-1)^{k+l}$	$= \cos(kx_5)\cos(lx_6)$
$\sin kx_5 \ \sin lx_6$	+	$(-1)^{k+l+1}$	
$\sin kx_5 \ \cos lx_6$	—	$(-1)^{k+l}$	$\cos(kx_5)\cos(lx_6) \xrightarrow{g} \cos(k(x_5+\pi))\cos(l(-x_6+\pi))$
$\cos kx_5 \sin lx_6$	-	$(-1)^{k+l+1}$	$= \cos\left((k+l)\pi\right)\cos(kx_5)\cos(lx_6)$

Scalars

$$S_{\text{scalar}} = \int_{0}^{2\pi} dx_{5} dx_{6} \left\{ \partial_{\alpha} \Phi^{\dagger} \partial^{\alpha} \Phi - M^{2} \Phi^{\dagger} \Phi \right\} \quad R_{5} = R_{6} = 1$$

$$\frac{p_{r} \quad p_{g}}{\cos kx_{5} \cos lx_{6}} + \frac{p_{r} \quad p_{g}}{(-1)^{k+l}} + \frac{(-1)^{k+l}}{(-1)^{k+l+1}}$$

$$\sin kx_{5} \cos lx_{6} + \frac{(-1)^{k+l+1}}{(-1)^{k+l+1}}$$

$$\cos kx_{5} \sin lx_{6} + \frac{(-1)^{k+l+1}}{(-1)^{k+l+1}}$$

The classification of the modes is:

(k, l)	p_{KK}	$(p_r, p_g) = (++)$	(+-)	(-+)	()
(0,0)	+	$\frac{1}{2\pi}$			
(0, 2l)	+	$\frac{1}{\sqrt{2\pi}}\cos 2lx_6$			$\frac{1}{\sqrt{2\pi}}\sin 2lx_6$
(0, 2l - 1)			$\frac{1}{\sqrt{2\pi}}\cos(2l-1)x_6$	$\frac{1}{\sqrt{2\pi}}\sin(2l-1)x_6$	
(2k,0)	+	$\frac{1}{\sqrt{2\pi}}\cos 2kx_5$		$\frac{1}{\sqrt{2\pi}}\sin 2kx_5$	
(2k - 1, 0)			$\frac{1}{\sqrt{2\pi}}\cos(2k-1)x_5$		$\frac{1}{\sqrt{2}\pi}\sin(2k-1)x_5$
$(k,l)_{k+l \text{ even}}$	+	$\frac{1}{\pi}\cos kx_5\cos lx_6$	$\frac{1}{\pi}\sin kx_5\sin lx_6$	$\frac{1}{\pi}\sin kx_5\cos lx_6$	$\frac{1}{\pi}\cos kx_5\sin lx_6$
$(k,l)_{k+l \text{ odd}}$	_	$\frac{1}{\pi}\sin kx_5\sin lx_6$	$\frac{1}{\pi}\cos kx_5\cos lx_6$	$\frac{1}{\pi}\cos kx_5\sin lx_6$	$\frac{1}{\pi}\sin kx_5\cos lx_6$

$$Gauge Bosons$$

$$S_{\text{gauge}} = \int_{0}^{2\pi} dx_5 dx_6 \left\{ -\frac{1}{4} F_{MN} F^{MN} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu} - \xi (\partial_5 A_5 + \partial_6 A_6))^2 \right\}$$

$$A_M = \{A_\mu, A_5, A_6\}$$

Vector boson

$$\underbrace{-\partial^{\mu}F_{\mu\nu} - \frac{1}{\xi}\partial_{\nu}\partial^{\mu}A_{\mu}}_{=p^{2}A_{\mu}} + (\partial_{5}^{2} + \partial_{6}^{2})A_{\nu} = 0$$

Same spectrum and wave functions as scalar fields with M=0

Scalar Components

In Unitary gauge: $\xi \to \infty$

$$\partial_5 A_5 + \partial_6 A_6 = 0$$

The two fields are not independent

$$A_{5,6} = \sum \phi_{5,6}(x_5, x_6) A^{(k,l)}$$

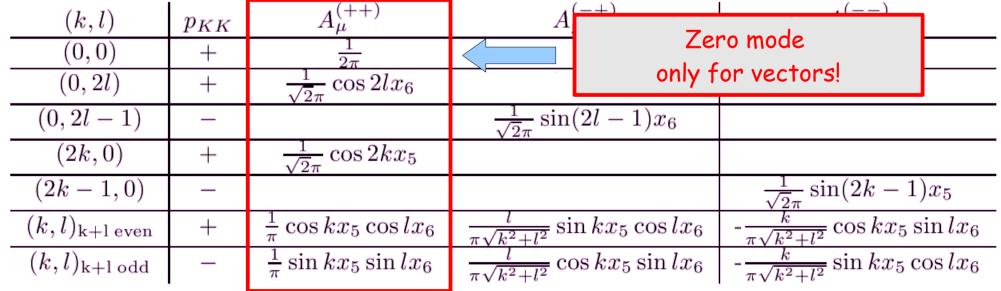
$$\begin{aligned} & \textbf{Gauge Bosons} \\ S_{\text{gauge}} = \int_{0}^{2\pi} dx_{5} dx_{6} \left\{ -\frac{1}{4} F_{MN} F^{MN} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu} - \xi (\partial_{5} A_{5} + \partial_{6} A_{6}))^{2} \right\} \\ & A_{M} = \{A_{\mu}, A_{5}, A_{6}\} \\ A_{\mu} = (p_{r}, p_{g}) & \longrightarrow \begin{cases} A_{5} = (-p_{r}, p_{g}) \\ A_{6} = (-p_{r}, -p_{g}) \end{cases} & \text{Parities are} \\ \text{related} \end{aligned}$$

$$Gauge Bosons$$

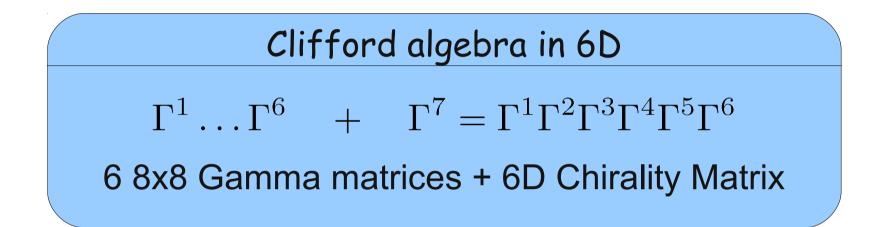
$$S_{\text{gauge}} = \int_{0}^{2\pi} dx_{5} dx_{6} \left\{ -\frac{1}{4} F_{MN} F^{MN} - \frac{1}{2\xi} (\partial_{\mu} A^{\mu} - \xi (\partial_{5} A_{5} + \partial_{6} A_{6}))^{2} \right\}$$

$$A_{M} = \left\{ A_{\mu}, A_{5}, A_{6} \right\}$$

$$A_{\mu} = (p_{r}, p_{g}) \bigoplus \begin{cases} A_{5} = (-p_{r}, p_{g}) \\ A_{6} = (-p_{r}, -p_{g}) \end{cases}$$
Parities are related



Why the RPP contains zero mode chiral fermions?



$$\Gamma^{\mu} = \begin{pmatrix} \gamma^{\mu} & 0\\ 0 & \gamma^{\mu} \end{pmatrix}, \quad \Gamma^{5} = \begin{pmatrix} 0 & i\gamma^{5}\\ i\gamma^{5} & 0 \end{pmatrix}, \quad \Gamma^{6} = \begin{pmatrix} 0 & \gamma^{5}\\ -\gamma^{5} & 0 \end{pmatrix}$$
$$\Gamma^{7} = \begin{pmatrix} -\gamma^{5} & 0\\ 0 & \gamma^{5} \end{pmatrix}$$

Why the RPP contains zero mode chiral fermions?

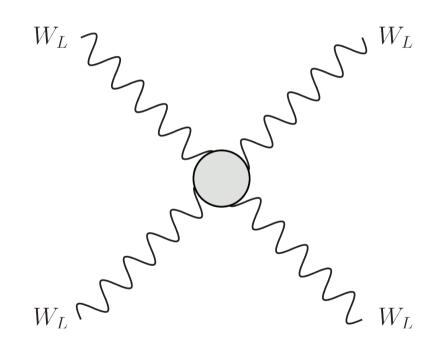
Why the RPP contains zero mode chiral fermions?

$$\begin{array}{l} \text{Kinetic} \\ \text{term} \end{array} \int dx_5 dx_6 i \bar{\Psi} \Gamma^M \partial_M \Psi = \int dx_5 dx_6 i (\bar{\Psi}_+ \Gamma^M \partial_M \Psi_+ + \bar{\Psi}_- \Gamma^M \partial_M \Psi_- + \dots) \\ i \bar{\Psi}_{\pm} \Gamma^M \partial_M \Psi_{\pm} = i \bar{\psi}_{\pm} \gamma^\mu \partial_\mu \psi_{\pm} + \frac{1}{2} [\bar{\psi}_{L\pm} \gamma^5 (\partial_5 \mp i \partial_6) \psi_{R\pm} + \bar{\psi}_{R\pm} \gamma^5 (\partial_5 \pm i \partial_6) \psi_{L\pm}] \\ \hline \\ & \mathbf{Glide} \\ \frac{1}{2} [\bar{\psi}_{L\pm} \gamma^5 (\partial_5 \pm i \partial_6) \psi_{R\pm} + \bar{\psi}_{R\pm} \gamma^5 (\partial_5 \mp i \partial_6) \psi_{L\pm}] \\ \hline \\ \psi_{\{L,R\}\pm} (g(x)) = \psi_{\{L,R\}\mp} \\ \text{Non Chiral 4D zero mode} \\ \end{array}$$

Chiral 4D theory!

The SM case

Scattering of longitudinally polarized gauge bosons



4-leg + s-channel + t-channel + u-channel

$$\mathcal{T} = A \left(\frac{s}{M_W^2}\right)^2 + B \frac{s}{M_W^2} + C$$

Explicitly divergent high-energy behaviour

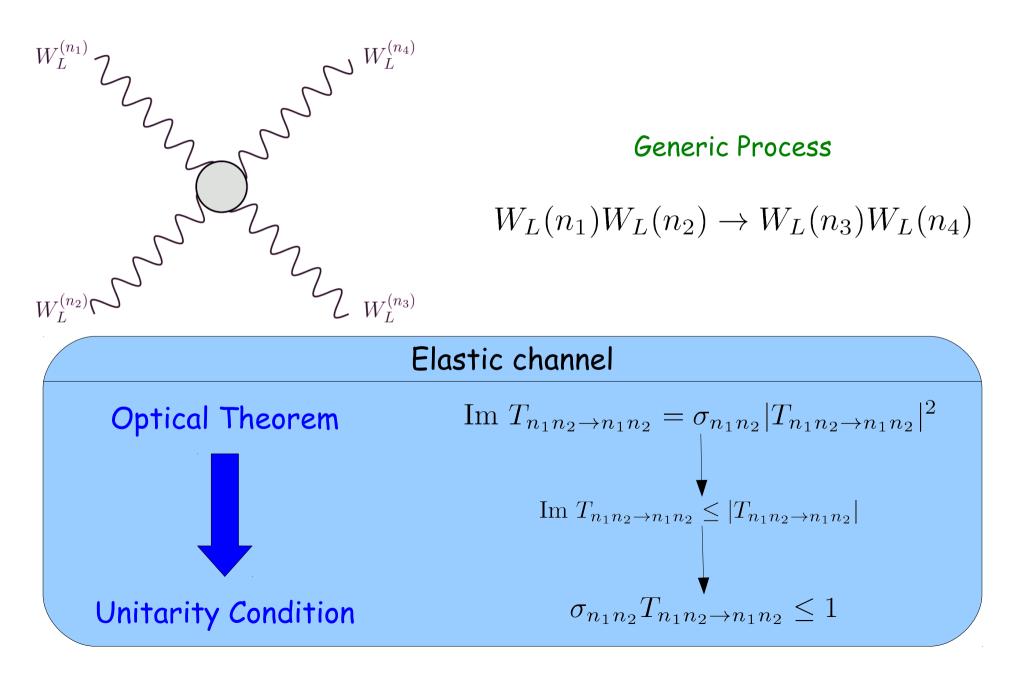
$$\mathbf{A} = 0$$
 Cancellations among pure gauge diagrams

$$B = 0 \qquad \begin{array}{c} \text{Cancellations involving} \\ \text{Higgs boson} \end{array}$$

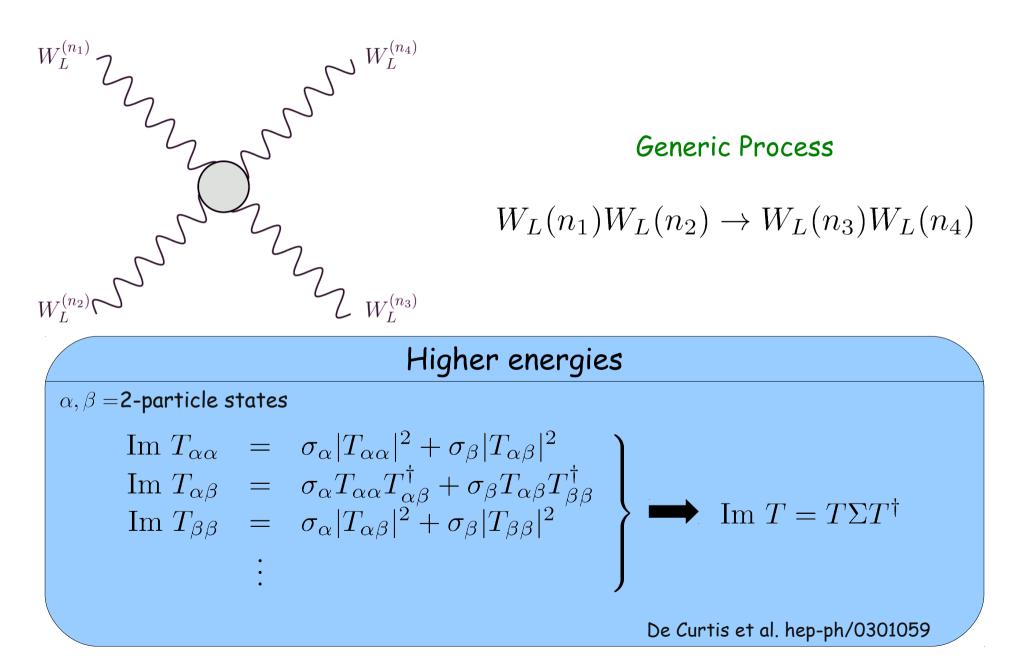
 $C \xrightarrow[s \gg M_h]{} \operatorname{constant}$

Unitarity condition: $M_H^2 \leq rac{4\pi\sqrt{2}}{G_F}$

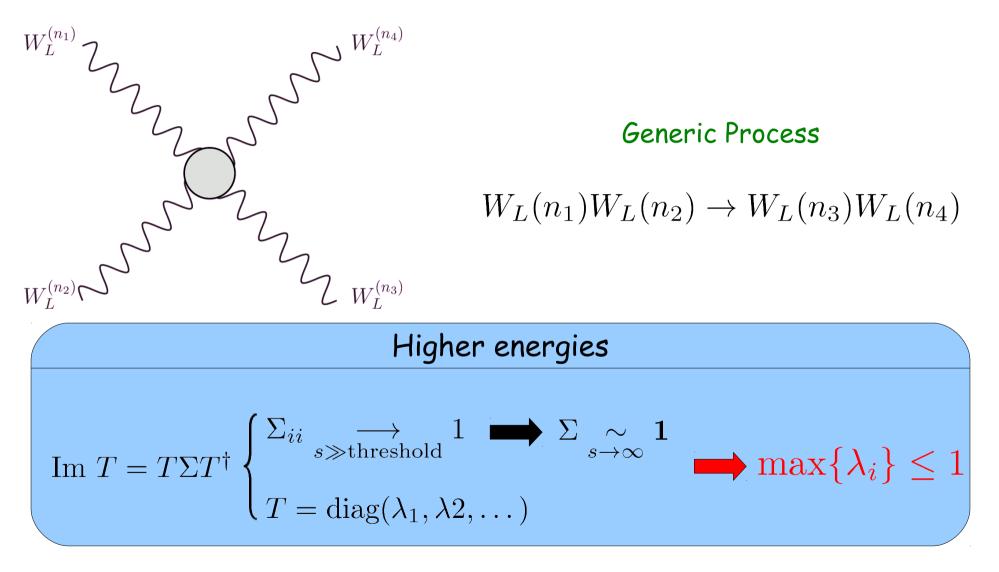
The Unitarity Matrix



The Unitarity Matrix



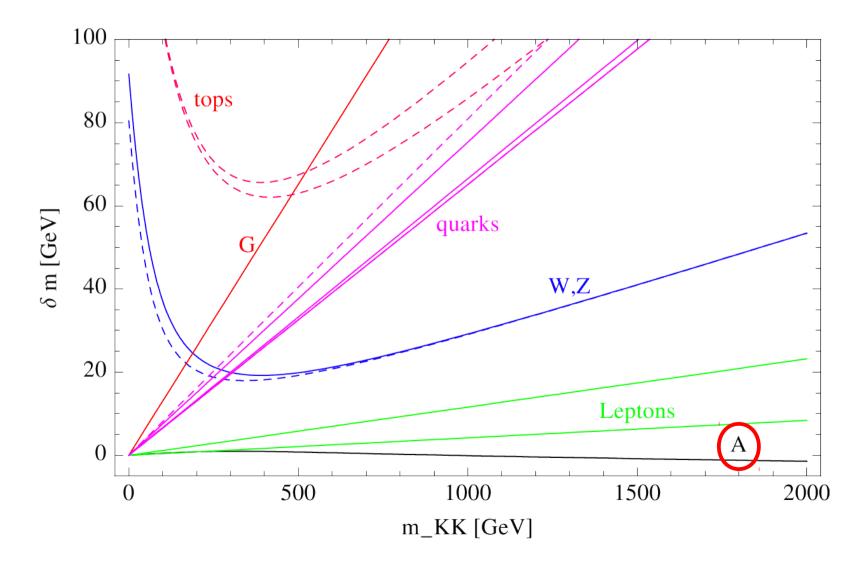
The Unitarity Matrix



energy for which the maximum eigenvalue of the scattering matrix violates the unitarity bound

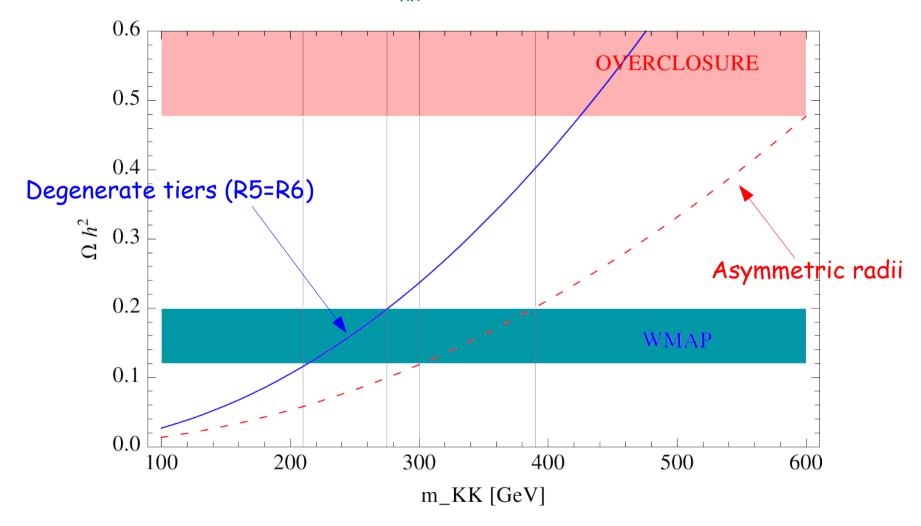
The tier (1,0)-(0,1)

The lightest (1,0)-(0,1) state is the natural DM candidate



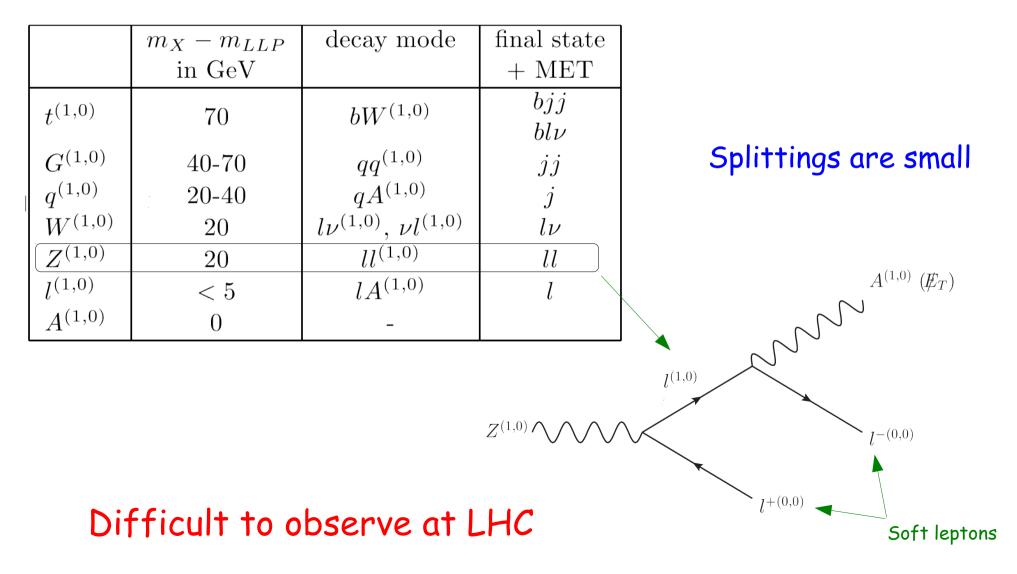
The tier (1,0)-(0,1)

(Rough) Estimation of M_{KK} from Dark Matter abundance

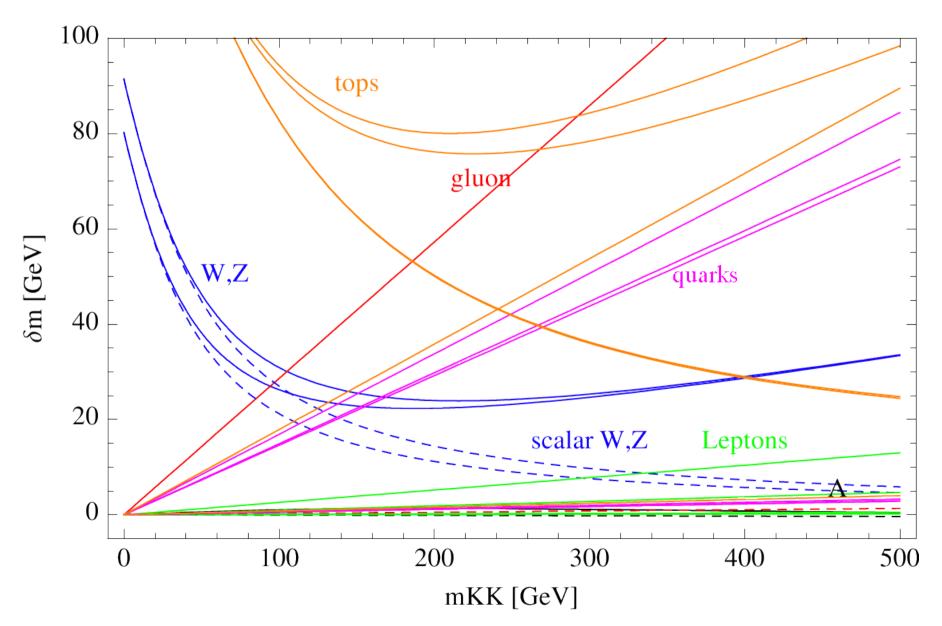


The tier (1,0)-(0,1)

Production at LHC



The tier (1,1)



Conclusions

Universal Extra-dimensions can accommodate a Dark Matter candidate through conservation of KK parity

> In **5D** KK parity must be imposed **by hand** on the **fixed points** of the orbifold

In 6D only three orbifolds without fixed points/lines but chiral zero mode fermions only on the Real Projective Plane

Few parameters: $M_{\kappa\kappa}$ and Λ that can be estimated from computation of **unitarity bounds** and **Dark Matter abundance**