A possible connection between neutrino mass generation and the lightness of a NMSSM pseudoscalar

Debottam Das

Laboratoire de Physique Theorique d'Orsay

Talk presented at : Rencontre de Physique des Particules 2011

Ref: arXiv:**1011.5037**

(Asmaa Abada, Gautam Bhattacharyya, Cédric Weiland)

Outline

- NMSSM can offer a very light pseudo-scalar Higgs boson A_1 interesting phenomenology related to
 - Higgs physics
 - dark matter annihilations
- Strong constraints coming from Upsilon decays, B physics and acclerator bounds
- Proposing a definite model for neutrino mass generation in NMSSM, we reanalyze the status of all those experimental constraints

More specifically :

Can we evade the experimental constraints which are otherwise very stringent?

Superpotential:

 $W_{\text{MSSM}} = \overline{u} y_u Q H_u - \overline{d} y_d Q H_d - \overline{e} y_e L H_d + \mu H_u H_d$

 H_u , H_d , Q, L, \overline{u} , \overline{d} , $\overline{e} \Rightarrow$ chiral superfields

 \Rightarrow Provides all Yukawa interactions in SM

 \Rightarrow y_u, y_d, y_e are the dimensionless Yukawa couplings \Rightarrow 3 × 3 matrices in family space

Proper SUSY phenomenology requires

- $\mu \ll M_P$ (Plank scale), M_G (Gut scale)
- And, $\mu > 100 \text{ GeV}$ (From LEP limit on chargino mass)

 $\Rightarrow \mu \sim M_{SUSY} \sim TeV$ is required

The so-called μ problem in MSSM

NMSSM

Embedding MSSM in a Supergravity framework, μ ~ M_{SUSY} can be generated via a particular Higgs dependent (ad-hoc) term in the Kähler potential ⇒ Giudice-Masiero mechanism

This is true only for Supergravity inspired SUSY breaking models

An elegant way to solve this problem is by introducing an additional singlet superfield S with a coupling $\lambda SH_u H_d$ in the superpotential \Rightarrow

 $W_{NMSSM} = \lambda SH_u H_d + \frac{k}{3}S^3 + \dots (\mathcal{Z}_3 \text{ invariant superpotential})$

The VEV v_S of the real scalar component of <u>S</u> generates

 $\Rightarrow \mu_{eff} = \lambda \nu_S \Rightarrow \ \mu_{eff} \sim M_{SUSY}$

This is known as Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Simplest SUSY standard model with M_{SUSY} as the only scale in the Lagrangian

- The SM singlet scalar $S \Rightarrow can leave the footprints only in the Higgs sector and in the neutralino sector <math>\Rightarrow$
 - 3 CP-even neutral Higgs bosons H_i (H₁, H₂, H₃)
 H₁ is the lightest CP-even Higgs boson
 - **9** 2 CP-odd neutral Higgs bosons A_1 and A_2 ($A_2 \simeq A_{MSSM}$)
 - One charged Higgs boson H^{\pm}
 - Five neutralinos χ_i^0 , $i = 1 \dots 5$, which are mixtures of the Bino, the neutral Wino, the neutral Higgsinos and the Singlino

Our focus will be on the lightest pseudoscalar A_1

Light pseudoscalar in the NMSSM

- In the MSSM, \Rightarrow m_A > 93.4 GeV (From LEP : $e^+e^- \rightarrow$ A h)
- In the NMSSM, the lightest pseudoscalar (A_1) can be very light

Recent analysis shows that $m_{A_1} > 210 \text{ MeV}$

Ref: S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, JHEP 1008 (2010) 003

Light A₁ boson leads to exciting phenomenology related to both Higgs hunting and dark matter annihilations Higgs Physics:

The interest of a light A_1 is that *it provides a new and dominant decay channel for the lightest Higgs boson* $h \Rightarrow$ **LEP search strategy does not work !**

 $h \rightarrow A_1 A_1 \rightarrow 4f$ final state ! where $A_1 \rightarrow 2\mu, 2\tau, 2b$

- Particular interest is in the zone when $m_{A_1} < 10 \text{ GeV}$
 - \bullet This allows to accommodate <code>lightest CP-even Higgs mass m_h \sim 95-105 GeV</code>
 - Such a light h boson does not require large stop mass
 - \Rightarrow This helps to ameliorate the SUSY fine-tuning problem
 - m_h (~ 98 GeV) could explain the slight excess of events as reported by the LEP2

- Lightest neutralino (LSP) ⇒ neutral, massive having only weak interactions ⇒ ideal candidate for DM
- DAMA.. CoGeNT.. \Rightarrow reported events in excess of the expected background \Rightarrow compatible with $m_{DM} \sim 5 12 \text{ GeV}$

Light DM \sim 10 GeV is favoured !

■ WMAP constraint is satisfied via CP-odd Higgs (A₁) exchange $\Rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow A_1^* \rightarrow f\bar{f}$

In MSSM, $m_{\chi_1^0} \lesssim 20$ GeV is practically ruled out since A boson cannot be too light

Ref: D. Feldman, Z. Liu and P. Nath, Phys. Rev. D 81 (2010) 117701

But NMSSM can ! thanks to lightness of A₁

A_1 : How it couples with matter

In general

$$A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A S_I$$

- A_{MSSM} is the doublet like CP-odd scalar in the MSSM sector of the NMSSM
- S_{I} represents the pseudoscalar component of the singlet scalar in the NMSSM
- Phenomenology related to A_1 is principally governed by its couplings to the SM fermions \Rightarrow includes the doublet component (cos θ_A) only

$$\mathcal{L}_{Aff} \equiv C_{Aff} \frac{ig_2 m_f}{2m_W} \bar{f} \gamma_5 f A,$$

•
$$C_{A_1\mu^-\mu^+} = C_{A_1\tau^-\tau^+} = C_{A_1b\bar{b}} = X_d = \cos\theta_A \tan\beta$$
, $(\tan\beta = \nu_u/\nu_d)$

•
$$C_{A_1 t \bar{t}} = C_{A_1 c \bar{c}} = \cos \theta_A \cot \beta$$

However, light or ultra-light CP-odd scalars are highly constrained via Upsilon decays, B physics and collider searches

Most of these constraints *exploit* the $A_1 f\bar{f}$ coupling \Rightarrow thus couples via $\cos \theta_A$ only

Constraint on the A₁ **mass : Upsilon decays**

Ref: Florian Domingo, Ulrich Ellwanger, Esteban Fullana, Cyril Hugonie, Miguel-Angel Sanchis-Lozano : JHEP 0901:061,2009

• Radiative Upsilon decays ($\Upsilon(ns) \equiv b\bar{b}$ vector-like bound state with $m_{\Upsilon} \geq$ 9.46 GeV) i.e. $\Upsilon \rightarrow \gamma + X$ searched in B-factories like BaBar, CLEO..

• $\Upsilon \rightarrow \gamma + A_1$ followed by $A_1 \rightarrow \tau^+ \tau^-$, $\mu^+ \mu^- \Rightarrow$ visible if A_1 is quite light ($A_1 \leq 10 \text{ GeV}$) \Rightarrow put bounds on m_{A_1} and in particular on X_d

For $m_{A_1} > 10 \text{ GeV} \Rightarrow$ Strong bounds from B physics and accelerator results

Light A₁ : **Constraints from B physics**

Light A_1 : **Constraints from collider physics**

ALEPH collaboration has reanalysed of LEP-2 data for <u>h → A₁ A₁ → 4τ</u> final states (relevant for $m_{A_1} < 2m_b$)

Consequently upper limits have been placed on :

 $\frac{\sigma(e^+e^- \to Zh)}{\sigma_{\text{SM}}(e^+e^- \to Zh)} \times Br(h \to A_1A_1) \times \frac{Br(A_1 \to \tau^+ \tau^-)^2}{(A_1 \to \tau^+ \tau^-)^2}$

D0 collaboration (Fermilab Tevatron) has analyzed <u>h → A₁ A₁ → 4µ</u> mode and placed an upper bound on (relevant for m_{A₁} < 2m_τ): $\sigma(p\bar{p} \to hX) \times Br(h \to A_1 A_1) \times Br(A_1 \to \mu^+ \mu^-)^2$

Similarly, other searches in this direction are :

- \bullet $h \rightarrow A_1 \, A_1 \rightarrow 4 b$ for $m_h <$ 110 GeV (LEP)
- $h \rightarrow A_1 A_1 \rightarrow gg$, $c\bar{c}$, $\tau^+ \tau^-$ for $m_h 45 86 \text{ GeV}$ (OPAL)
- $h \rightarrow A_1 \, A_1 \rightarrow \, \mu^+ \, \mu^- \, \tau^+ \, \tau^-$ (D0)

All these observables constrain $Br(A_1 \rightarrow f\bar{f})$ and X_d

Outline :

Constraints	$m_{A_1} < 2m_{\tau}$	$[2\mathrm{m_{ au}},9.2\mathrm{GeV}]$	$[9.2 \text{ GeV}, M \gamma (1S)]$	$[M_{\Upsilon(1S)}, 2m_B]$
$\Upsilon(\mathfrak{n}\mathfrak{S}) \to \gamma A_1 \to \gamma(\mu^+\mu^-)$	\checkmark	×	×	×
$\Upsilon(\mathfrak{n}S) \to \gamma A_1 \to \gamma \tau^+ \tau^-$	×	\checkmark	×	×
$e^+e^- \rightarrow Z + 4\tau$	×	\checkmark	×	×
$A_1 - \eta_b$ mixing	×	Х	\checkmark	\checkmark
$e^+e^- \rightarrow b b \tau^+ \tau^-$	×	Х	X	\checkmark

We ask the following question: Is it possible that a light A_1 can avoid elimination

We remind that all constraints depend on : $A_1 \to f \bar{f} \Rightarrow \ m_{A_1} \ \mbox{\&} \ X_d$

We recall that Neutrinos are massless in the NMSSM

We propose an extension of the NMSSM with two additional gauge singlets carrying lepton numbers :

- Provides a substantial invisible decay route for A_1 &
- Generates the right size of neutrino mass through lepton number violating interactions

we examine the connection between neutrino masses and the pseudoscalar A_1

Light neutrino mass: Can it be a blessing for light A_1

Previous studies are for neutrino masses in the NMSSM:

- R-parity violating interactions in the NMSSM superpotential
- \Rightarrow not compatible with DM motivation
- Adding gauge-singlet neutrino superfields N_i to the NMSSM field content
- $\Rightarrow M_{N_i} \sim O(\text{TeV})$ (via $SN_i N_i$) but Yukawa coupling $f^{\nu} \sim 10^{-6}$

We implement the 'inverse seesaw' mechanism for generating neutrino masses

- Singlet neutrinos can be very light (few GeV)
- The neutrino Yukawa couplings ($f^{v} \sim O(1)$)
- Can enhance lepton flavor violating processes
- We will see how this seesaw mechanism can influence the known existing decay pattern of the A₁ boson

Superpotential :

$$W = W_{\text{NMSSM}} + W'$$

$$W' = f_{ij}^{\nu} H_{u} L_{i} N_{j} + (\lambda_{N})_{i} SN_{i} X_{i} + \frac{(\lambda_{X})_{i}}{2} SX_{i} X_{i}$$

- N_i and X_i : Gauge singlets carrying the lepton numbers -1 and +1
- $(\lambda_N)_i SN_i X_i$ is lepton number conserving term
- $\frac{(\lambda_X)_i}{2} SX_i X_i$ provides lepton number violation
- Once the scalar component of S acquires a vev (v_S), we have
 - Lepton number conserving mass terms (i) $M_{Ni}\Psi_{Ni}\Psi_{Xi}$ with $M_{Ni} \equiv (\lambda_N)_i \nu_S$ and

(ii) $(m_D)_{ij} \Psi_{\nu i} \Psi_{Nj}$ with $(m_D)_{ij} = f_{ij}^{\nu} \nu_u$

• Dynamically generated lepton number violating Majorana mass term $\mu_{Xi}\Psi_{Xi}\Psi_{Xi}$ with $(\mu_X)_i = (\lambda_X)_i \nu_S / 2$ Considering one generation, the (3×3) mass matrix in the $(\Psi_{\gamma}, \Psi_{N}, \Psi_{X})$ basis \Rightarrow

$$\mathcal{M} = \begin{pmatrix} 0 & m_D & 0 \\ m_D & 0 & M_N \\ 0 & M_N & \mu_X \end{pmatrix}$$

D The mass eigenvalues ($m_1 \ll m_2, m_3$)

$$m_1 = \frac{m_D^2 \,\mu_X}{m_D^2 + M_N^2} \,, \quad m_{2,3} = \mp \sqrt{M_N^2 + m_D^2} + \frac{M_N^2 \,\mu_X}{2(m_D^2 + M_N^2)} \,.$$

- m_1 is the lightest mass eigenvalue : Small values of μ_X provides $m_v \sim eV$ scale
- $\mu_X \sim O(eV)$ is natural as $\mu_X \rightarrow 0$ restores lepton number symmetry
- \bullet Thus M_N or m_D is unconstrained

 $M_N \sim O(10)$ GeV can influence substantially the decay pattern of A_1

Reanalyzing A_1 decay modes

- The lightest CP-odd scalar A_1 has additional interactions with the sterile neutrinos \Rightarrow thus new decay final states
 - \bullet $A_1 \rightarrow \Psi_{\nu} \Psi_N$: Depends on the $\cos \theta_A$ component of A_1
 - $A_1 \rightarrow \Psi_N \Psi_X$ and $\Psi_X \Psi_X$: Depend on the sin θ_A component of A_1

Consequently, the invisible branching ratios (normalized them with the visible modes)

$$\begin{array}{ll} \frac{\textrm{Br}\left(A_{1}\rightarrow\Psi_{\nu}\Psi_{N}\right)}{\textrm{Br}\left(A_{1}\rightarrow f\bar{f}\right)+\textrm{Br}\left(A_{1}\rightarrow c\bar{c}\right)} &\simeq & \frac{m_{D}^{2}}{m_{f}^{2}\,\textrm{tan}^{4}\,\beta+m_{c}^{2}}\,, \\ \\ \frac{\textrm{Br}\left(A_{1}\rightarrow\Psi_{N}\Psi_{X}\right)}{\textrm{Br}\left(A_{1}\rightarrow f\bar{f}\right)+\textrm{Br}\left(A_{1}\rightarrow c\bar{c}\right)} &\simeq & \textrm{tan}^{2}\,\theta_{A}\,\frac{M_{N}^{2}}{m_{f}^{2}\,\textrm{tan}^{2}\,\beta+m_{c}^{2}\,\textrm{cot}^{2}\,\beta}\,\frac{\nu^{2}}{\nu_{S}^{2}} \\ \\ \frac{\textrm{Br}\left(A_{1}\rightarrow\Psi_{X}\Psi_{X}\right)}{\textrm{Br}\left(A_{1}\rightarrow f\bar{f}\right)+\textrm{Br}\left(A_{1}\rightarrow c\bar{c}\right)} &\simeq & \textrm{tan}^{2}\,\theta_{A}\,\frac{\mu_{X}^{2}}{m_{f}^{2}\,\textrm{tan}^{2}\,\beta+m_{c}^{2}\,\textrm{cot}^{2}\,\beta}\,\frac{\nu^{2}}{\nu_{S}^{2}} \end{array}$$

(neglecting phase-space effects)

- Invisible decay prefers large $tan^2 \theta_A$, thus large singlet component and moderate values for tan β
- **D** The branching ratio into $A_1 \rightarrow \Psi_N \Psi_X$ dominates over the other modes
- For numerical illustration: we choose tan $\beta = 3, 20, \cos \theta_A = 0.1, M_N = 5, 30$ GeV
 - $m_{A_1} > M_N$ to have the two-body decay modes available
 - \bullet Thus for the two study points, we consider $m_{A_{11}} < 10~\text{GeV}$ and $m_{A_{11}} < 40~\text{GeV}$
 - Our parameter choice reflects two regimes where
 - (i) Upsilon constraints and (ii) B-physics or constraints from LEP are strong

Results

	tan $eta=20$, cos $ heta_A=0.1$		tan $\beta = 3$, cos $\theta_A = 0.1$	
\mathcal{M}_{N} (GeV)	5	30	5	30
$\fbox{Br}(A_1 \rightarrow \Psi_{\nu} \Psi_N)$	7×10^{-5}	3×10^{-6}	4×10^{-3}	1×10^{-4}
$Br(A_1\to \Psi_N\Psi_X)$	0.7	0.9	~ 1	~ 1
$\label{eq:Br} Br(A_1\to \Psi_X\Psi_X)$	0	0	0	0

- With the above choices of cos $θ_A$ and tan β, the resultant X_d is ruled out in general NMSSM for $m_{A_1} < 10$ GeV
- Our results show that, in both cases, A₁ has significant branching ratios into the invisible modes thus relaxing the known constraints that would arise from its visible decays
- Phase space suppression: $\left(\left\{1 \left(\frac{2m_f}{m_{A_1}}\right)^2\right\} / \left\{1 \left(\frac{2M_N}{m_{A_1}}\right)^2\right\}\right)^{1/2}$ Our choice $m_{A_1} > M_N$, m_f makes phase space contribution quite insignificant

Connection between light neutrino and light NMSSM pseudoscalar : Summary

- Scenarios with very light pseudoscalars in NMSSM leads to attractive phenomenology related to both Higgs hunting and dark matter annihilations
- However, these scenarios are constrained due to experimental bounds associated with the decays of a light A₁ into a pairs of SM fermions
- Our primary goal was to rescue the scenarios with light A₁ bosons while at the same time providing an explanation for the smallness of neutrino masses
- We augment the NMSSM Superpotential with two additional singlet neutrinos (carrying opposite lepton number) to meet our twin purpose
- Our results show that the invisible channels of light A₁ can have substantial branching fractions, thus suppressing the visible modes to a large extent
- This in turn weakens the existing constraints on the A₁ mass and on its couplings namely X_d to a large extent

THANK YOU

Constraint on the Higgs masses : Light A₁

- Radiative Upsilon decays ($\Upsilon(ns) \equiv b\bar{b}$ vector like bound state with $m_{\Upsilon} \ge 9.46 \text{ GeV}) \rightarrow \gamma + X$ searched in B-factories like BaBar, CLEO..
- In this regime h decay leads $h \to A_1 A_1 \to 4\tau \Rightarrow$ constrainted by the recent ALEPH results ($e^+ e^- \to Z + 4\tau$)
- **b** bottom-eta η_b meson \equiv CP-odd scalar $b\bar{b}$ bound state with $m_{\eta_b} \sim 9.389$ GeV has recently been discovered
- The mass difference Upsilon(1S) $\eta_b(1S) \Rightarrow$ hyperfine splitting (E^{EXP}_{hfs}(1S))
- - m_{A_1} with mass very close to m_{η_b} is constrained \Rightarrow physical states after mixing should provide the correct mass ~ 9.389 GeV

 $Br(B_s \rightarrow \mu^+ \, \mu^- \,)$ and $\Delta M_{s\,,\,d}$: Role of A_1

Small X_d : Constraints are much relaxed compared to the MSSM A boson