A possible connection between neutrino mass generation and the lightness of a NMSSM **pseudoscalar**

Debottam Das

Laboratoire de Physique Theorique ^d**'**Orsay

Talk presented at **:** Rencontre de Physique des Particules ²⁰¹¹

Ref: arXiv**:1011.5037**

(Asmaa Abada, Gautam Bhattacharyya, ^C**^é**dric Weiland**)**

Outline

- NMSSM can offer a very light pseudo-scalar Higgs boson A_1 \Rightarrow interesting phenomenology related to
	- Higgs physics
	- dark matter annihilations
- Strong constraints coming from <mark>Upsilon decays, B physics</mark> and acclerator bounds
- Proposing ^a definite model for neutrino mass generation in NMSSM, we reanalyze the status of all those <mark>experimental constraints</mark>

More specifically :

Can we evade the experimental constraints which are otherwise very stringent ?

Superpotential:

 $W_{\text{MSSM}} = \overline{\mathfrak{u}} \mathfrak{y}_{\mathfrak{u}}\operatorname{QH}_{\mathfrak{u}} - \mathrm{d}\mathfrak{y}_{\mathfrak{d}}\operatorname{QH}_{\mathfrak{d}} - \overline{e} \mathfrak{y}_{e}\operatorname{LH}_{\mathfrak{d}} + \mu \mathrm{H}_{\mathfrak{u}}\operatorname{H}_{\mathfrak{d}}$

 H_u , H_d , Q, L, \overline{u} , d , $\overline{e} \Rightarrow$ chiral superfields

 \Rightarrow Provides all Yukawa interactions in SM

 \Rightarrow $\mathbf{y_{u}}$, $\mathbf{y_{d}}$, $\mathbf{y_{e}}$ are the dimensionless Yukawa couplings \Rightarrow 3 \times 3 matrices in family
analog space

Proper SUSY phenomenology requires

- $\bullet\ \mu << M_{\text{P}}\left(\textsf{Plank scale}\right), \textsf{M}_\textsf{G}\left(\textsf{Gut scale}\right)$
- \bullet And, $\mu > 100$ GeV $\,$ (From LEP limit on chargino mass)

 \Rightarrow µ \sim $M_{\rm SUSY} \sim$ TeV is required

The so-called μ problem in ${\rm MSSM}$

NMSSM

Embedding MSSM in a *Supergravity* framework, $μ ~ M_{SUSY}$ can be generated via a particular Higgs dependent *(ad-hoc)* term in the Kähler potential \Rightarrow Giudice-Masiero mechanism

This is true only for Supergravity inspired SUSY breaking models

An elegant way to solve this problem is by introducing an additional singlet superfield ${\cal S}$ with a coupling $\lambda \mathrm{SH}_\mathrm{u} \, \mathrm{H}_\mathrm{d}$ in the superpotential \Rightarrow

 $W_{\text{NMSSM}} = \lambda \text{SH}_{\text{u}} \, \text{H}_{\text{d}} + \frac{\text{k}}{3} \, \text{S}^3 + \dots \, (\text{Z}_3 \text{ invariant superpotential})$

The VEV $\mathsf{\underline{v_S}}$ of the real scalar component of $\mathsf{\underline{S}}$ generates

 $\Rightarrow \mu_{eff} = \lambda v_S \Rightarrow \mu_{eff} \sim M_{SUSY}$

This is known as Next-to-Minimal Supersymmetric Standard Model (NMSSM)

Simplest SUSY standard model with M_{SUSY} as the only scale in the Lagrangian

- The SM singlet scalar $\texttt{S} \Rightarrow \texttt{\enspace}$ can leave the footprints only in the Higgs sector and in the
neutraline eactor neutralino sector \Rightarrow
	- 3 CP-even neutral Higgs bosons $H_i\;(\mathsf{H}_1\,,\mathsf{H}_2\,,\mathsf{H}_3)$ $\rm H_1$ is the lightest $\rm CP$ -even Higgs boson
	- 2 CP-odd neutral Higgs bosons A_1 and A_2 $(A_2 \simeq A_{MSSM})$
	- One charged Higgs boson ${\rm H}^{\pm}$
	- Five neutralinos χ^0_i , $i=1\ldots 5$, which are mixtures of the Bino, the neutral Wino, the neutral Higgsinos and the Singlino

Our focus will be on the lightest pseudoscalar \mathcal{A}_1

Light pseudoscalar in the NMSSM

- In the ${\rm MSSM}_{\rm r} \Rightarrow {\rm m_A} >$ 93.4 GeV (From LEP : $e^+ \, e^- \rightarrow {\rm A}$ h)
- In the NMSSM, the lightest pseudoscalar (\mathcal{A}_1) can be very light

Recent analysis shows that $\,m_{A_{\,1}} > 210$ MeV

Ref: S. Andreas, O. Lebedev, S. Ramos-Sanchez and A. Ringwald, JHEP 1008 (2010) 003

Light \mathcal{A}_1 boson leads to exciting phenomenology related to both Higgs hunting and dark matter annihilations

Higgs Physics:

The interest of a light \mathcal{A}_1 is that *it provides a new and dominant decay channel for the lightest* Higgs boson ^h [⇒] **LEP search strategy does not work !**

 $h \to A_1 A_1 \to 4f$ final state ! where $A_1 \to 2\mu, 2\tau, 2b$

- Particular interest is in the zone when $\,{{\rm m}_\mathrm{A}}_{\,1} <$ 10 GeV
	- \bullet This allows to accommodate *lightest CP-even Higgs mass* $\, \mathrm{m_{h} \sim 95-105}$ GeV
	- Such ^a light ^h boson does not require large stop mass
	- ⇒ This helps to ameliorate the **SUSY fine-tuning problem**
	- \bullet \mathfrak{m}_h (∼ 98 GeV) could explain the slight excess of events as reported by the LEP2
- Lightest neutralino (LSP) ⇒ neutral, massive having only weak interactions ⇒ ideal
condidate for DM candidate for DM
- DAMA.. CoGeNT..[⇒] reported events in excess of the expected background [⇒] compatible with $\mathfrak{m}_{\mathrm{DM}}\sim$ 5 $-$ 12 GeV

Light DM ∼ 10 GeV is favoured ! |
————————————————————

WMAP constraint is satisfied via CP-odd Higgs (A_1) exchange $\Rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1 \to \text{A}_1^* \to \text{f}\bar{\text{f}}$

In MSSM, $m_{\chi_1^0} \stackrel{<}{_{\sim}} 20$ GeV is practically ruled out since A boson cannot be too light

Ref: D. Feldman, Z. Liu and P. Nath, Phys. Rev. D 81 (2010) 117701

But NMSSM can ! thanks to lightness of \mathcal{A}_1

A1 **: How it couples with matter**

In general

 $A_1 = \cos \theta_A A_{MSSM} + \sin \theta_A S_I$

- \bullet \mathcal{A}_{MSSM} is the doublet like CP-odd scalar in the MSSM sector of the NMSSM
- \bullet \mathcal{S}_{I} represents the pseudoscalar component of the singlet scalar in the NMSSM
- Phenomenology related to A_1 is principally governed by its couplings to the SM fermions \Rightarrow includes the doublet component ($\cos\theta_{\rm A}$) only

$$
\mathcal{L}_{A f \bar{f}} \equiv C_{A f \bar{f}} \frac{i g_2 m_f}{2 m_W} \bar{f} \gamma_5 f A,
$$

•
$$
C_{A_1\mu^{-}\mu^{+}} = C_{A_1\tau^{-}\tau^{+}} = C_{A_1b\bar{b}} = X_d = \cos\theta_A \tan\beta
$$
, $(\tan\beta = v_u/v_d)$

•
$$
C_{A_1 t\bar{t}} = C_{A_1 c\bar{c}} = \cos \theta_A \cot \beta
$$

However, light or ultra-light CP-odd scalars are highly constrained viaUpsilon decays, B physics and collider searches

Most of these constraints *exploit* the A_1 f \bar{f} coupling \Rightarrow thus couples via $\cos \theta_A$ only

Constraint on the ^A¹ **mass : Upsilon decays**

Ref: Florian Domingo, Ulrich Ellwanger, Esteban Fullana, Cyril Hugonie, Miguel-Angel Sanchis-Lozano : JHEP 0901:061,2009

• Radiative Upsilon decays (Υ(ns) = b $\bar{\rm b}$ vector-like bound state with $m_\Upsilon~\geq~$ 9.46 GeV) i.e. $\Upsilon \rightarrow \gamma + X$ searched in
B fectories like BeBer, CLEO B-factories like BaBar, CLEO..

• ^Υ [→] ^γ ⁺ ^A¹ followed by ^A¹ [→] $\tau^+\tau^-,~\mu^+\mu^-\Rightarrow$ visible if A_1 is quite light
(Λ , \lt 10 CeV), \searrow put bounds on m $(\mathsf{A_1}\,\leq\,10$ GeV) \Rightarrow put bounds on $\mathsf{m}_{\mathsf{A_1}}$ and in particular on $\chi_{\rm d}$

For $m_{A_{1}} > 10$ GeV $\;\Rightarrow$ Strong bounds from B physics and accelerator results

Light ^A¹ **: Constraints from ^B ^physics**

Light ^A¹ **: Constraints from collider ^physics**

ALEPH collaboration has reanalysed of LEP-2 data for $h\to A_1A_1\to 4\tau$ final states
(relevent for $m\leq 3m$) (relevant for $\rm m_{\AA_1} < 2 m_b$)

Consequently upper limits have been placed on :

 $\frac{\sigma(e^+e^-\to Z\hbar)}{\sigma_{\text{SM}}(e^+e^-\to Z\hbar)}\times\text{Br}(\hbar\to A_1A_1)\times\textbf{Br}(A_1\to\tau^+\tau^-)^2$

D0 collaboration (Fermilab Tevatron) has analyzed $h \to A_1A_1 \to 4\mu$ mode and
placed an unner bound an (relevent for $m \leq 3m$). placed an upper bound on (relevant for $\rm m_{A_{1}} < 2m_{\tau})$: $\sigma(p\bar{p} \to hX) \times Br(h \to A_1A_1) \times Br(A_1 \to \mu^+ \mu^-)^2$

Similarly, other searches in this direction are :

- \bullet $\text{h} \rightarrow \text{A}_1\text{A}_1 \rightarrow 4\text{b}$ for $\text{m}_\text{h} < 110$ GeV (LEP)
- \bullet h \to A₁ A₁ \to gg, cc, $\tau^+ \tau^-$ for m_h 45 86 GeV (OPAL)
- $h \to A_1 A_1 \to \mu^+ \mu^- \tau^+ \tau^-$ (D0)

All these observables constrain $\mathrm{Br}(\mathcal{A}_1\to \mathrm{f}\bar{\mathrm{f}})$ and X_{d}

Outline :

We ask the following question: <mark>Is it possible that a light \mathcal{A}_1 can avoid elimination</mark>

We remind that all constraints depend on $:$ A_1 \rightarrow $f\bar{f}$ \Rightarrow $\frac{m_{A_1}}{n_{A_1}}$ & X_d

We recall that Neutrinos are massless in the NMSSM

We propose an extension of the NMSSM with two additional gauge singlets carrying lepton numbers :

- \bullet Provides a substantial invisible decay route for \mathcal{A}_1 &
- \bullet Generates the right size of neutrino mass through lepton number violating interactions

 ${\bf w}$ e ${\bf e}$ ${\bf x}$ and ${\bf a}$ ${\bf b}$ ${\bf c}$ ${\bf b}$ ${\bf b}$ ${\bf c}$ ${\bf b}$ ${\bf b}$ ${\bf c}$ ${\bf c}$ ${\bf b}$ ${\bf c}$ ${\bf c}$

\bf{Light} **P E** \bf{Light} **P E** \bf{Light} **P** \bf{Light} **P** \bf{Light} \bf{L} \bf{L}

Previous studies are for neutrino masses in the NMSSM:

- $\bullet~$ R-parity violating interactions in the NMSSM superpotential
- \Rightarrow not compatible with DM motivation
- \bullet Adding gauge-singlet neutrino superfields $\rm N_i$ to the $\overline{\rm NMSSM}$ field content $\Rightarrow\;{\sf M_{N}}_{\rm\it i}\sim{\rm O}$ (TeV) (via S ${\rm N}_{\rm i}$ ${\rm N}_{\rm i}$) but Yukawa coupling f $^{\rm v}$ \sim 10⁻⁶

We implement the '<mark>inverse seesaw'</mark> mechanism for *generating neutrino masses*

- Singlet neutrinos can be very light (few GeV)
- $\bullet~$ The neutrino Yukawa couplings (f $^{\sf{v}}\sim {\rm O}(1)$)
- •• Can enhance lepton flavor violating processes
- We will see *how this seesaw mechanism can influence the known existing decay pattern of the* A_1 boson

Superpotential :

$$
W = W_{NMSSM} + W'
$$

$$
W' = f_{ij}^{V} H_{u} L_{i} N_{j} + (\lambda_{N})_{i} SN_{i} X_{i} + \frac{(\lambda_{X})_{i}}{2} SX_{i} X_{i}
$$

- \bullet N_i and X_i : Gauge singlets carrying the lepton numbers -1 and $+1$
- \bullet $(\lambda_{\rm N})_{\rm i}$ SN $_{\rm i}$ $X_{\rm i}$ is lepton number conserving term
- • $\bullet \frac{(\lambda_X)_i}{2} SX_i X_i$ provides lepton number violation
- Once the scalar component of S acquires a vev (ν_{S}) , we have
	- Lepton number conserving mass terms (i) $M_{\text{Ni}}\Psi_{\text{Ni}}\Psi_{\text{Xi}}$ with $M_{\text{Ni}}\equiv(\lambda_{\text{N}})_{\text{i}}\nu_{\text{S}}$ and (ii) $(m_D)_{ij}\Psi_{\nu i}\Psi_{Nj}$ with $(m_D)_{ij} = f_{ij}^{\nu} \nu_u$
	- \bullet Dynamically generated lepton number violating Majorana mass term $\mu_{Xi}\Psi_{Xi}\Psi_{Xi}$ with $(\mu_X)_i = (\lambda_X)_i v_S/2$

Considering one generation, the (3×3) mass matrix in the $(\Psi_\mathrm{\nu},\Psi_\mathrm{N}\,,\Psi_\mathrm{X})$ basis \Rightarrow

$$
\mathcal{M} = \left(\begin{array}{ccc} 0 & m_D & 0 \\ m_D & 0 & M_N \\ 0 & M_N & \mu_X \end{array} \right)
$$

The mass eigenvalues ($m_1 << m_2$, m_3)

$$
m_1\,=\frac{m_D^2\,\mu_X}{m_D^2+M_N^2}\,,\quad m_{2,3}= \mp \sqrt{M_N^2+m_D^2}+\frac{M_N^2\,\mu_X}{2(m_D^2+M_N^2)}\,.
$$

- \bullet $\rm m_1$ is the lightest mass eigenvalue : Small values of $\rm \mu_X$ provides $\rm m_\nu \sim eV$ scale
- \bullet $\mu_X \sim$ O(eV) is natural as $\mu_X \rightarrow 0$ restores lepton number symmetry
- \bullet Thus $M_{\rm N}$ or $\rm m_D$ is unconstrained

 $M_N \sim O(10)$ GeV can influence substantially the decay pattern of A_1

Reanalyzing ^A¹ **decay modes**

- The lightest CP-odd scalar \mathcal{A}_1 has additional interactions with the <mark>sterile neutrinos</mark> \Rightarrow thus new decay final states
	- \bullet $\mathcal{A}_1 \to \Psi_\mathrm{v} \Psi_\mathrm{N}$: Depends on the $\cos\theta_\mathrm{A}$ component of \mathcal{A}_1
	- \bullet $\mathcal{A}_1 \to \Psi_\mathsf{N} \Psi_\mathsf{X}$ and $\Psi_\mathsf{X} \Psi_\mathsf{X}$: Depend on the $\mathsf{sin} \, \theta_\mathsf{A}$ component of \mathcal{A}_1

Consequently, the invisible branching ratios (normalized them with the visible modes)

$$
\frac{\text{Br}(A_1 \rightarrow \Psi_v \Psi_N)}{\text{Br}(A_1 \rightarrow f\overline{f}) + \text{Br}(A_1 \rightarrow c\overline{c})} \approx \frac{m_D^2}{m_f^2 \tan^4 \beta + m_c^2},
$$
\n
$$
\frac{\text{Br}(A_1 \rightarrow \Psi_N \Psi_X)}{\text{Br}(A_1 \rightarrow f\overline{f}) + \text{Br}(A_1 \rightarrow c\overline{c})} \approx \tan^2 \theta_A \frac{M_N^2}{m_f^2 \tan^2 \beta + m_c^2 \cot^2 \beta} \frac{v^2}{v_S^2}
$$
\n
$$
\frac{\text{Br}(A_1 \rightarrow \Psi_X \Psi_X)}{\text{Br}(A_1 \rightarrow f\overline{f}) + \text{Br}(A_1 \rightarrow c\overline{c})} \approx \tan^2 \theta_A \frac{\mu_X^2}{m_f^2 \tan^2 \beta + m_c^2 \cot^2 \beta} \frac{v^2}{v_S^2}
$$

(neglecting phase-space effects)

- Invisible decay prefers large $\tan^{2}\theta_{\mathrm{A}}$, thus large singlet component and moderate values for tan β
- The branching ratio into $\mathcal{A}_1 \to \Psi_\mathsf{N} \Psi_\mathsf{X}$ dominates over the other modes
- For numerical illustration: we choosetan β = 3, 20, cos θ $_{A}$ = 0.1, M_{N} = 5, 30 GeV
	- \bullet $\rm m_{A_{-1}}>M_{N}$ to have the two-body decay modes available
	- \bullet Thus for the two study points, we consider $\rm m_{A_{1}} < 10$ GeV and $\rm m_{A_{1}} < 40$ GeV
	- Our parameter choice reflects two regimes where
	- (i) Upsilon constraints and (ii) B-physics or constraints from LEP are strong

Results

- With the above choices of $\cos\theta_\text{A}$ and $\tan\beta$, the resultant X_d is ruled out in general
NUCON L NMSSM for $\rm m_{A_{-1}} < 10$ GeV
- Our results show that, in both cases, \mathcal{A}_1 has significant branching ratios into the invisible modes thus <mark>relaxing the known constraints that would arise from its visible</mark> decays
- Phase space suppression : $\left(\left\{1-(\frac{2\mathfrak{m}_{\rm f}}{\mathfrak{m}_{\rm A_1}})^2\right\}\Big/\left\{1-(\frac{2M_{\rm N}}{\mathfrak{m}_{\rm A_1}})^2\right\}\right)^{1/2}$ Our choice $\rm m_{A_{1}} >M_{N},\ m_{f}$ makes phase space contribution quite insignificant

Connection between light neutrino and light NMSSM**pseudoscalar : Summary**

- Scenarios with very light pseudoscalars in NMSSM leads to attractive phenomenology related to both Higgs hunting and dark matter annihilations
- However, these scenarios are constrained due to experimental bounds associated withthe decays of a light \mathcal{A}_1 into a pairs of SM fermions
- Our primary goal was to rescue the scenarios with light \mathcal{A}_1 bosons while at the same time providing an explanation for the smallness of neutrino masses
- We augment the $\mathsf{NMSSM}\mathsf{\:Superpotential\:with\: two\: additional\:singlet\: neutrinos}$ (carrying opposite lepton number) to meet our twin purpose
- Our results show that the invisible channels of light \mathcal{A}_1 can have substantial branching fractions, thus suppressing the visible modes to ^a large extent
- This in turn weakens the existing constraints on the \mathcal{A}_1 mass and on its couplings namely $\mathrm{X_d}$ to a large extent

THANK YOU

$\bf{Constant\ on\ the\ Higgs\ masses: Light\ } A_1$

- Radiative Upsilon decays ($\Upsilon(ns)\equiv b\bar{b}$ vector like bound state with $\mathfrak{m}_{\Upsilon}\geq 9.46$ GeV) $\rightarrow\gamma+X$ searched in B-factories like BaBar, CLEO..
- $\Upsilon \equiv \gamma + A_1$ followed by $A_1 \to \tau^+ \tau^-$, $\mu^+ \mu^- \Rightarrow$ visible if A_1 is quite light $(\mathcal{A}_1 \leq 10)$ GeV \Rightarrow put bounds on $m_{\mathcal{A}_{-1}}$ and in particular on $\cos \theta_{\mathcal{A}}$
- In this regime h decay leads $h \to A_1A_1 \to 4\tau$ \Rightarrow constrainted by the recent ALEPH recults (ctrl change in Z), A d results ($e^+e^-\to Z+4\tau$)
- bottom-eta $\eta_{\rm b}$ meson \equiv CP-odd scalar ${\rm b\bar b}$ bound state with $\rm m_{\eta_{\rm b}}\sim$ 9.389 GeV has recently been discovered
- The mass difference $\text{Upsilon}(1S) \eta_{\text{b}}(1S) \Rightarrow \text{hyperfine splitting (E}_{\text{hfs}}^{\text{EXP}}(1S))$
- $\mathsf{E^{EXP}_{hfs}}(1S) \sim 70\mathsf{MeV} > \mathsf{E^{QCD}_{hfs}}(1S)(42\mathsf{MeV}) \Rightarrow$ could be explained by η_b-A_1 mixing (M.Drees and K.i.Hikasa: Phys.Rev.D 41, 1547 (1990); F.Domingo, U.Ellwanger and M.A.Sanchis-Lozano, Phys.Rev.Lett. 103, **111802 (2009))**
- $\rm{m_{A_{1}}}$ with mass very close to $\rm{m_{H_{B}}}$ should provide the correct mass \sim 9.389 GeV $_{\rm b}$ is constrained ⇒physical states after mixing

 $\mathsf{Br}(\mathsf{B}_{\mathsf{s}} \to \mu^+ \, \mu^-)$ and $\Delta \mathsf{M}_{\mathsf{s}, \, \mathsf{d}}$: Role of A_{1}

Small X_d : Constraints are much relaxed compared to the MSSM A boson