

Cold Nuclear Matter Effects on Quarkonium Production at RHIC and the LHC

N. Matagne University of Mons

Rencontre de Physique des Particules 2011 January 14, 2011

In collaboration with E. G. Ferreiro, F. Fleuret, J.-P. Lansberg and A.

Rakotozafindrabe

N. Matagne (University of Mons)

CNM Effects on Quarkonium Production

Outline

Motivations

- **(2)** On the kinematics of J/ψ production
- (3) Results for J/ψ at RHIC
 - Results for ↑ at RHIC
- 5 EMC effect for gluons
- 6 Results for J/ψ at the LHC, PbPb collisions

Conclusions

Motivations

- J/ψ a good probe of QGP produced in **A+A** collisions
- Here we focalise on **p+A** data (no QGP is possible) where only cold nuclear matter (CNM) effects are in play:

shadowing and nuclear absorption

イロト イポト イヨト イヨト

- 3

3 / 21

- At p+p level we do not know the specific production kinematics at a partonic level: color singlet (2 → 2) vs color octet models (2 → 1)
- Our goal: To investigate the CNM effects and the impact of the specific partonic production kinematics

Shadowing: initial cold nuclear matter effects

- Nuclear shadowing is an initial-state effect on the partons distributions
- Gluon distribution functions are modified by the nuclear environment
- PDFs in nuclei different from the superposition of PDFs of their nucleons

Shadowing effects increases with energy (1/x) and decrease with $Q^2(m_T)$

$$\mathcal{R}^A_i(x,\mu_f) = rac{f^A_i(x,\mu_f)}{\mathcal{A}f^{ ext{nucleon}}_i(x,\mu_f)} \;\; f_i = q, ar{q}, g$$

N. Matagne (University of Mons)

CNM Effects on Quarkonium Production

Absorption

Particle spectrum altered by interactions with the nuclear matter they traverse

 $\Rightarrow J/\psi$ suppression due to final state interactions with spectator nucleons Usual parametrisation (Glauber model) :

$$S_{abs} = exp(-\rho\sigma_{abs}L)$$

- ρ the nuclear matter density
- σ_{abs} the break-up cross section
- L the path length

Energy dependence (see E. G. Ferreiro talk, Rencontres d'Etretat, 20-23/09)

- At low energy: the heavy system undergoes successive interactions with nucleons in its path and has to survive all of them ⇒ Strong nuclear absorption
- At high energy: the coherence length is large and the projectile interacts with the nucleus as a whole ⇒ Smaller nuclear absorption

- CNM -shadowing- effects depends completely on J/ψ kinematics (x, Q^2)
- J/ψ kinematics depends on the production mechanism

Two production mechanisms

- $g + g \rightarrow c\bar{c}$ $2 \rightarrow 1$ Instrinsic scheme: the p_T of the J/ψ comes from initial partons
- $g + g \rightarrow c\bar{c} + g$ $2 \rightarrow 2$ Extrinsic scheme: the p_T of the J/ψ is balanced by the outgoing gluon

Instrinsic scheme

- \bullet Intrinsic scheme: 2 \to 1 process color evaporation model @ LO or color octet model @ α_s^2
- y, p_T can be determined using PHENIX p + p data

Phys. Rev. Lett. 98, 232002 (2007)

• Easy to handle : $y^{J/\psi}$ and $p_T^{J/\psi}$ directly give $x_{1,2}$

Extrinsic scheme

- $\bullet~2 \rightarrow 2$ partonic process with collinear initial gluons
- Momentum conservation results in a complex expression of x₂ as a function of (x₁, y, p_T) (see next slide)
- Data alone is not sufficient to determine x₁ and x₂
- Models are mandatory to compute the weighting of kinematically allowed (x_1, x_2)
- One needs to describe the data at low p_T
- LO CSM, COM at @ α_s^3 and NLO CEM do NOT describe the data well for $p_T < 2$ GeV
- We choose CSM + s-channel cut at RHIC in p + p Haberzettl and Lansberg, PRL 100, 032006 (2008)
- A proper description of the kinematics matters here more than the underlying physics

N. Matagne (University of Mons)

If $\mathcal{F}_g^A(x, \vec{r}, z, \mu_f)$ gives the distribution of a gluon of mom. fract. x at a position \vec{r}, z in a nucleus A, the differential cross-section reads:

$$\frac{d\sigma_{AB}}{dy \, dP_T \, d\vec{b}} =$$

2
ightarrow 1 kinematics with intrinsic $p_{\mathcal{T}}$

 $2 \rightarrow 2$ kinematics with extrinsic $\textit{p}_{\mathcal{T}}$

If $\mathcal{F}_g^A(x, \vec{r}, z, \mu_f)$ gives the distribution of a gluon of mom. fract. x at a position \vec{r}, z in a nucleus A, the differential cross-section reads:

$$\frac{d\sigma_{AB}}{dy \, dP_T \, d\vec{b}} =$$

 $\mathbf{2}
ightarrow \mathbf{1}$ kinematics with intrinsic p_T

 $\int d\vec{r}_A dz_A dz_B$ $\times \mathcal{F}_g^A(x_1^0, \vec{r}_A, z_A, \mu_f) \mathcal{F}_g^B(x_2^0, \vec{r}_B, z_B, \mu_f)$ $\times \sigma_{gg}^{\text{Intr.}}(x_1^0, x_2^0)$ $\times S_A(\vec{r}_A, z_A) S_B(\vec{r}_B, z_B)$ $\mathbf{2} \rightarrow \mathbf{2}$ kinematics with extrinsic p_T

$$\int dx_1 dx_2 \int d\vec{r}_A dz_A dz_B \times \mathcal{F}_g^A(x_1, \vec{r}_A, z_A, \mu_f) \mathcal{F}_g^B(x_2, \vec{r}_B, z_B, \mu_f) \times 2\hat{s} P_T \frac{d\sigma_{gg \rightarrow \Upsilon + g}}{d\hat{t}} \delta(\hat{s} - \hat{t} - \hat{u} - M^2) \times S_A(\vec{r}, z_A) S_B(\vec{r}_B, z_B)$$

If $\mathcal{F}_g^A(x, \vec{r}, z, \mu_f)$ gives the distribution of a gluon of mom. fract. x at a position \vec{r}, z in a nucleus A, the differential cross-section reads:

$$\frac{d\sigma_{AB}}{dy \, dP_T \, d\vec{b}} =$$

$$x_{1,2} = \frac{m_T}{\sqrt{s_{NN}}} \exp\left(\pm y\right) \equiv x_{1,2}^0(y, P_T)$$

ヘロト 不得下 不足下 不足下

For a given couple (y, p_T) , x_2 is larger in the extrinsic scheme

N. Matagne (University of Mons) CNM Effects on Quarkonium Production Januar

3. 3

Results for J/ψ at RHIC

• shadowing depends on the partonic process: $2 \rightarrow 1$ or $2 \rightarrow 2$

- antishadowing peak shifted toward larger y in the extrinsic case
- in order to reproduce data: σ_{abs} Extrinsic > σ_{abs} Instrinsic

N. Matagne (University of Mons) CNM I

Results for J/ψ at RHIC

- EKS98: compatible with intrinsic and extrinsic
- EPS08: extrinsic scheme is favorized
- nDSg: intrinsic and extrinsic equally bad

	$\sigma_{\rm abs}$	χ^2_{min}
EKS98 Int.	3.2 ± 2.4	0.9
EPS08 Int.	$2.1^{+2.6}_{-2.2}$	1.1
nDSg Int.	$2.2^{+2.6}_{-2.2}$	1.6
EKS98 Ext.	$3.9^{+2.7}_{-2.3}$	1.1
EPS08 Ext.	$3.6^{+2.4}_{-2.5}$	0.5
nDSg Ext.	$3.0^{+2.5}_{-2.4}$	1.4

12 / 21

Υ : Experimental situation

P. Artoisenet, J. Campbell, J.P. Lansberg, F. Maltoni, Phys. Rev. Lett. 101, 152001 (2008).

Results at 1.8 TeV

CSM describes well the data at NNLO*

Υ : Experimental situation

P. Artoisenet, J. Campbell, J.P. Lansberg, F. Maltoni, Phys. Rev. Lett. 101, 152001 (2008).

Results at 1.8 TeV

CSM describes well the data at NNLO*

• However LO CSM is sufficient to describe low p_T data

N. Matagne (University of Mons) CNM Effect

CNM Effects on Quarkonium Production

January 14, 2011 13 / 21

Υ : Experimental situation

S. J. Brodsky and J. P. Lansberg, Phys. Rev. D81, 014004 (2010).

Results at 200 GeV

• Upper dashed line, $m_b=4.5$ GeV, $\mu_r=m_T,\ \mu_F=2m_T$

• Lower dashed line, $m_b = 5$ GeV, $\mu_r = 2m_T$, $\mu_F = m_T$,

Results for dAu at RHIC (Υ)

Intrinsic vs Extrinsic schemes

Antishadowing peak shifted toward larger y in the extrinsic case

Results for dAu at RHIC (Υ)

- backward: EMC effect
- central: antishadowing
- forward : shadowing ≈ 1 fractional energy loss is needed ($\Delta E \propto E$)

16 / 21

EMC effect for gluons

- Tension between the theory and the PHENIX points in the backward region
- The backward region correspond to the EMC region (x > 0.1)
- EMC effect basically unknown for the gluon

EMC effect for gluons

- Let us try to increase the suppression of g(x) in the EMC region
- Keeping momentum conservation : $\int xg(x) dx = Cst$

EMC effect for gluons

Works better

N. Matagne (University of Mons)

-

Results for J/ψ at the LHC, PbPb collisions

 $\sqrt{s} = 5.5$ TeV, shadowing: EKS98

A D A D A D A

Conclusions

- We have studied two schemes : intrinsic (2 \rightarrow 1) and extrinsic (2 \rightarrow 2) for different shadowing and nuclear absorption
- J/ψ at RHIC R_{dAu} vs y σ_{abs} extrinsic $> \sigma_{abs}$ intrinsic
- ↑ antishadowing and EMC region
 2 → 2 process
 need fractional energy loss
- J/ψ at LHC R_{PbPb} vs y and N_{part} for EKS98 shadowing Strong rapidity dependence (inverted w.r.t. RHIC)

Conclusions

Backup

The Glauber Monte Carlo

N. Matagne (University of Mons)

Results for dAu at RHIC (Υ)

- In blue, $\sigma_{abs} = 0.0 \text{ mb}$
- In green, $\sigma_{abs} = 0.5 \text{ mb}$
- In red, $\sigma_{abs} = 1.0 \text{ mb}$

24 / 21

- 4 回 ト - 4 回 ト

Results for dAu at RHIC (Υ)

- In blue, $\sigma_{abs} = 0.0 \text{ mb}$
- In green, $\sigma_{abs} = 0.5 \text{ mb}$
- In red, $\sigma_{abs} = 1.0 \text{ mb}$

3

Results for J/ψ at the LHC, PbPb collisions

