J— ' 1Geant4 v8.3
“ S tanford

Linear H
Accelerator 72 -

B

DT W
Center..

-

L
a Ty

Seoringdl

Maketo AsaiiSLAC)
Geant4d. Tutorial Course

Contents

Sensitive detector and hit

Hit class

Sensitive detector class
Touchable

Use of G4HCofThisEvent class

Scoring Il - M.Asai (SLAC) 2

Sensitive detector and hit

Sensitive detector and Hit

Each Logical Volume can have a pointer to a sensitive detector.
» Then this volume becomes sensitive.

Hit is a snapshot of the physical interaction of a track or an accumulation of

interactions of tracks in the sensitive region of your detector.

A sensitive detector creates hit(s) using the information given in G4Step
object. The user has to provide his/her own implementation of the detector

FESPONSE.

Hit objects, which are still the user’s class objects, are collected in a G4Event

object at the end of an event.

Scoring Il - M.Asai (SLAC)

4

Sensitive detector vs. primitive scorer

Sensitive detector Primitive scorer

, You have to implement your own »Many scorers are provided by
detector and hit classes. Geant4. You can add your own.

One hit class can contain many. Each scorer accumulates one
guantities. A hit can be made for guantity for an event.

each individual step, or accumulate
guantities.

Basically one hits collection is made
per one detector.

G4MultiFunctionalDetector creates
many collections (maps), i.e. one

collection per one scorer.

, Hits collection is relatively compact. Keys of maps are redundant for
scorers of same volume.

I would suggest to :
» Use primitive scorers

» If you are not interested in recording each individual step but accumulating
some physics quantities for an event for a run, and

» If you do not have to have too many scorers.
» Otherwise, consider implementing your own sensitive detector.

Scoring Il - M.Asai (SLAC)

)

Class diagram

Concrete class provided by 64
Abstract base class provided by G4
Template class provided by 64

User's class

G4LogicalVolume G4Event i\
/705\ .
0.1

G4HCofThisEvent

G4VSensitiveDetector

kind of T

G4MultiFunctionalDetector

\-

\

G4VHitsCollection

— G4THitsCollection

userSensi

tiveDetector \/7

G4VPrimitiveSensitivity

G4VHit
G4THitsMap ‘\\ n f

userHitsCollection
or userHitsMap

hits map

userHit

Scoring Il - M.Asai (SLAC) 6

Hit class

Hit class

Hit is a user-defined class derived from G4VHit.

You can store various types information by implementing your own concrete Hit class.
For example:

Position and time of the step
Momentum and energy of the track
Energy deposition of the step
Geometrical information

or any combination of above

Hit objects of a concrete hit class must be stored in a dedicated collection which is
instantiated from G4THitsCollection template class.

The collection will be associated to a G4Event object via G4HCofThisEvent.

Hits collections are accessible
» through G4Event at the end of event.
» to be used for analyzing an event
» through G4SDManager during processing an event.

» to be used for event filtering.
Scoring Il - M.Asai (SLAC) 8

Implementation of Hit class

#include "G4VHit.hh"
class MyHit : public G4VHit
{
public:
MyHit(sone_ar gunent s);
virtual ~ MyHit ();
virtual void Draw();
virtual veid Print();
private:
/[some data members
public:
/[some set/get methods

I

#include “G4THitsCollection.hh ”

typedef G4THitsCollection< MyHit > MyHitsCollection

Scoring Il - M.Asai (SLAC)

)

Sensitive detector class

Sensitive Detector class

» Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4V SensitiveDetector.hh
#include * MyHit.nh *
class G4Step;
class G4HCofThisEvent;
class MyDetector : public G4V SensitiveDetector
{
public:
MyDetector(G4String hame);
virtual ~ MyDetector ();
virtual void Initialize(G4AHCofThisEvent*HCE);
virtual G4boeol ProcessHits(G4Step* astep ,
G4TouchableHistory* ROhist);
virtual veid EndOfEvent(G4AHCofThisEvent*HCE);
private:
MyHitsCollection * hitsCollection
G4int collectionlD

Scoring Il - M.Asai (SLAC)

Sensitive detector

A tracker detector typically generates a hit for every single step of every single
(charged) track.

» A tracker hit typically contains
» Position and time
» Energy deposition of the step
» Track ID

A calorimeter detector typically generates a hit for every cell, and accumulates
energy deposition in each cell for all steps of all tracks.

» A calorimeter hit typically contains
» Sum of deposited energy
» Cell ID

You can instantiate more than one objects for one sensitive detector class. Each
object should have its unigue detector name.

» For example, each of two sets of detectors can have their dedicated
sensitive detector objects. But, the functionalities of them are exactly the
same to each other so that they can share the same class. See
examples/extended/analysis/A01 as an example.

Scoring Il - M.Asai (SLAC) 12

Step

Step has two points and also “delta” information of a particle (energy loss on

the step, time-of-flight spent by the step, etc.).

Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary, and it

logically belongs to the next volume.

Note that you must get the volume information from the “PreStepPoint”.

Boundar

Post-step point

Pre-step point

Scoring Il - M.Asai (SLAC)

Implementation of Sensitive Detector - 1

MyDetector:: MyDetector (G4String det ect or _nane)
:G4VSensitiveDetector(det ect or _nane),
collectionID(- 1)

collectionName.insert(“col | ecti on_name");

In the constructor, define the name of the hits collection which is handled by
this sensitive detector

In case your sensitive detector generates more than one kinds of hits (e.g.

anode and cathode hits separately), define all collection hames.

Scoring Il - M.Asai (SLAC) 14

Implementation of Sensitive Detector - 2

void MyDetector:: Initialize (G4HCofThisEvent*HCE)
{
if(collectionlD <0) collectionlD = GetCollectionlD (0);
hitsCollection = new MyHitsCollection
(SensitiveDetectorName,collectionName] 0))}
HCE >AddHitsCollection (collectionlD, hitsCollection

Initialize() method is invoked at the beginning of each event.
Get the unique ID number for this collection.
» GetCollectionID() is a heavy operation. It should not be used for every events.

» GetCollectionID() is available after this sensitive detector object is constructed
and registered to G4SDManager. Thus, this method cannot be invoked in the
constructor of this detector class.

Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given
in the argument.

In case of calorimeter-type detector, you may also want to instantiate hits for all
calorimeter cells with zero energy depositions, and insert them to the collection.

Scoring Il - M.Asai (SLAC) 15

Implementation of Sensitive Detector - 3

G4bool MyDetector:: ProcessHits
(G4Step*aStep,G4TouchableHistory* ROhist)

{
MyHit * aHit = new MyHit ();

/I some set methods

hitsCollection - >Insert(aHit
return true;

This ProcessHits() method is invoked for every steps in the volume(s) where this
sensitive detector is assigned.

In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the existing
hit object where the current step belongs to (for calorimeter detector).

Don't forget to collect geometry information (e.g. copy number) from
“PreStepPoint”.

Currently, returning boolean value is not used.
Scoring Il - M.Asai (SLAC) 16

Implementation of Sensitive Detector - 4

void MyDetector:: EndOfEvent (G4HCofThisEvent*HCE)
)

» This method is invoked at the end of processing an event.

» It is invoked even if the event is aborted.
» It is invoked before UserEndOfEventAction.

Scoring Il - M.Asai (SLAC) 17

Touchable

Step point and touchable

As mentioned already, G4Step has two G4StepPoint objects as its starting and
ending points. All the geometrical information of the particular step should be
taken from “PreStepPoint”.

y Geometrical information associated with G4Track is identical to
“PostStepPoint”.

Each G4StepPoint object has
» Position in world coordinate system
» Global and local time
» Material

» G4TouchableHistory for geometrical information

G4 TouchableHistory object is a vector of information for each geometrical
hierarchy.

» COpYy humber
» transformation / rotation to its mother

Since release 4.0, fiandles (or smart-pointers) to touchables are intrinsically used.
Touchables are reference counted.

Scoring Il - M.Asai (SLAC) 19

Copy number

Suppose a calorimeter is made of

4x5 cells.
» and it is implemented by two n c

levels of replica.

In reality, there is only one physical n c ~

volume object for each level. Its

position is parameterized by its ©
o o122 |
copy humber.

To get the copy number of each
level, suppose what happens if a
step belongs to two cells.

» Remember geometrical information in G4Track is identical to
"PostStepPoint”.

» You cannot get the correct copy number for "PreStepPoint” if you directly
access to the physical volume.

Use touchable to get the proper copy number, transform matrix, etc.
Scoring Il - M.Asai (SLAC) 20

Touchable

» G4TouchableHistory has information of geometrical hierarchy of the point.

GA4Step* astep ;
GA4StepPoint * preStepPoint = aStep - >GetPreStepPoint ();
G4TouchableHistory * theTouchable =
(G4TouchableHistory™*)(preStepPoint - >GetTouchable ());
G4int copyNo = theTouchable ->GetVolume () - >GetCopyNo ();
G4int motherCopyNo
= theTouchable ->GetVolume(1)->GetCopyNo ();
G4int grandMotherCopyNo
= theTouchable ->GetVolume(2)->GetCopyNo ();
GA4ThreeVector worldPos = preStepPoint - >GetPosition ();
G4ThreeVector localPes = theTouchable ->GetHistory ()
- >GetTopTransform (). TransformPoeint (worldPos);

Scoring Il - M.Asai (SLAC)

Use of G4HCofThisEvent class

G4HCof ThisEvent

» A G4Event object has a G4HCofThisEvent object at the end of (successful) event

processing. G4HCofThisEvent object stores all hits collections made within the

event.
» Pointer(s) to the collections may be NULL if collections are not created in the
particular event.
» Hits collections are stored by pointers of G4VHitsCollection base class. Thus,
you have to cast them to types of individual concrete classes.
» The index number of a Hits collection is uniqgue and unchanged for a run.
The index number can be obtained by

G4SDManager::GetCollectionlD(“det Nane/ col Nane”);

» The index table is also stored in G4Run.

Scoring Il - M.Asai (SLAC)

Usage of G4HCofThisEvent

void MyEventAction::EndOfEventAction(const G4Event* ewvt)
{

static int CHCID = -1;

If(CHCID <0) CHCID = G4SDManager::GetSDMpointer()

- >GetCollectionID(* myDet/collectionl “);
G4HCofThisEvent * HCE = evt - >GetHCofThisEvent ();
MyHitsCollection *CHC =0;

If(HCE)
{CHC = (MyHitsCollection *) (HCE- >GetHC(CHCID)); }
If(CHC)
{
int n_hit = CHC->entries ();
G4cout<< “ My detector has "'<<pn_hit <<" hits."<<G4endl;
for(int 11=0;i11<n_hit;i1++)
{
MyHit * aHit = (*CHC)[i1];
aHit - >Print();

Scoring Il - M.Asai (SLAC)

When to invoke GetCollectionID()?

Which is the better place to invoke G4SDManager::GetCollectionID() in a user

event action class, in its constructor or in the BeginOfEventAction()?
It actually depends on the user's application.

» Note that construction of sensitive detectors (and thus registration of their
hits collections to SDManager) takes place when the user issues

RunManager::Initialize(), and thus the user’s geometry is constructed.

In case user's EventAction class should be instantiated before
Runmanager::Initialize() (or /run/initialize command), GetCollectionID() should

not be in the constructor of EventAction.

While, if the user has nothing to do to Geant4 before RunManager::Initialize(),
this initialize method can be hard-coded in the main() before the instantiation of
EventAction (e.g. exampleA01), so that GetCollectionID() could be in the

constructor.

Scoring Il - M.Asai (SLAC) 25

