Geant4d v8.3

g S.-’.ra nford

L inear

Scdring I

Maketo AsaiiSLAC)
Geant4d. Tutorial Course

Contents

Retrieving information from Geant4
Basic structure of detector sensitivity:
Sensitive detector vs. primitive scorer
Primitive scorers

Filter class

Accumulating scores for a run

Scoring | - M.Asai (SLAC)

2

Retrieving information from
Geant4

Extract useful information

» Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.

» You have to add a bit of code to extract information useful to you.

» There are two ways:
» Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)
» You have full access to almost all information
» Straight-forward, but do-it-yourself

» Use Geant4 scoring functionality
» Assign G4VSensitiveDetector to a volume

» Hit is a snapshot of the physical interaction of a track or an
accumulation of interactions of tracks in the sensitive (or interested)
part of your detector.

» Hits collection is automatically stored in G4Event object, and
automatically accumulated if user-defined Run object is used.

» Use user hooks (G4UserEventAction, G4UserRunAction) to get event /
run summary.

Scoring | - M.Asai (SLAC)

Basic structure of
detector sensitivity

Sensitive detector

» A G4VSensitiveDetector object can be assigned to G4LogicalVolume.

» In case a step takes place in a logical volume that has a G4VSensitiveDetector
object, this G4VSensitiveDetector is invoked with the current G4Step object.

» You can implement your own sensitive detector classes, or use scorer
classes provided by Geant4.

Stepping Particle Sensitive
Manager Change Detector

ﬁi i ctionlLength

"l

IsSensitiv

Jate
r

Scoring | - M.Asai (SLAC) 6

Defining a sensitive detector

» Basic strategy
G4LogicalVolume* myLogCalor =

G4V SensetiveDetector* pSensetivePart

new MyDetector(“/mydet *);
G4SDManager* SDMan = G4SDManager::GetSDMpointer();
SDMar >AddNewDetector (pSensitivePart)

myLogCalor - >SetSensitiveDetector (pSensetivePart)i

» Each detector object must have a unique name.
Some logical volumes can share one detector object.

More than one detector objects can be made from one detector class with
different detector name.

One logical volume cannot have more than one detector objects. But, one
detector object can generate more than one kinds of hits.

» €.g. a double-sided silicon micro-strip detector can generate hits for
each side separately.

Scoring | - M.Asai (SLAC)

Class diagram

Concrete class provided by 64
Abstract base class provided by G4
Template class provided by 64

User's class

G4LogicalVolume G4Event i\
/705\ .
0.1

G4HCofThisEvent

G4VSensitiveDetector

kind of T

G4MultiFunctionalDetector

\-

\

G4VHitsCollection

— G4THitsCollection

userSensi

tiveDetector \/7

G4VPrimitiveSensitivity

G4VHit
G4THitsMap ‘\\ n f

userHitsCollection
or userHitsMap

hits map

userHit

Scoring | - M.Asai (SLAC) 8

Hits collection, hits map

G4\VHitsCollection is the common abstract base class of both G4THitsCollection
and G4THitsMap.

G4THitsCollection is a template vector class to store pointers of objects of one
concrete hit class type.

» A hit class (deliverable of G4VHit abstract base class) should have its own
identifier (e.g. cell ID).

» In other words, G4THitsCollection requires you to implement your hit class.

G4THitsMap is a template map class so that it stores keys (typically cell ID, i.e.
copy number of the volume) with pointers of objects of one type.

» Objects may not be those of hit class.

» All of currently provided scorer classes use G4THitsMap with simple
double.

» Since G4THitsMap is a template, it can be used by your sensitive detector
class to store hits.

Scoring | - M.Asai (SLAC)

Sensitive detector
VS.
primitive scorer

G4MultiFunctionalDetector

y GAMultiFunctionalDetector is a concrete class derived from G4VSensitiveDetector.
It should be set to a logical volume as a kind of sensitive detector.

It takes arbitrary number of G4VPrimitiveSensitivity classes. By registering
G4VPrimitiveSensitivity classes, you can define the scoring detector of your need.

» Each G4VPrimitiveSensitivity class accumulates one physics quantity for each
physical volume.

» For example, G4PSDoseScorer (a concrete class of G4VPrimitiveSensitivity
provided by Geant4) accumulates dose for each cell.

By using G4MultiFunctionalDetector and provided concrete
G4VPrimitiveSensitivity classes, you are freed from implementing sensitive
detector and hit classes.

Scoring | - M.Asai (SLAC) 11

Sensitive detector vs. primitive scorer

Sensitive detector Primitive scorer

, You have to implement your own »Many scorers are provided by
detector and hit classes. Geant4. You can add your own.

One hit class can contain many. Each scorer accumulates one
guantities. A hit can be made for guantity for an event.

each individual step, or accumulate
guantities.

Basically one hits collection is made
per one detector.

G4MultiFunctionalDetector creates
many collections (maps), i.e. one

collection per one scorer.

, Hits collection is relatively compact. Keys of maps are redundant for
scorers of same volume.

I would suggest to :
» Use primitive scorers

» If you are not interested in recording each individual step but accumulating
some physics quantities for an event or a run, and

» If you do not have to have too many scorers.
» Otherwise, consider implementing your own sensitive detector.

Scoring | - M.Asai (SLAC) 12

Primitive scorers

List of provided primitive scorers

» Concrete Primitive Scorers (See Application Developers Guide 4.4.6)
» Track length
» G4PSTracklLength, G4PSPassagelracklLength
» Deposited energy
» G4PSEnergyDepsit, G4PSDoseDeposit, G4PSChargeDeposit
» Current/Flux

» G4PSFlatSurfaceCurrent, G4PSSphereSurfaceCurrent, G4PSPassageCurrent,
G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux

y Others

» G4PSMInKinEAtGeneration, G4PSNofSecondary, G4PSNofStep
SurfaceCurrent : SurfaceFlux : CellFlux -

Count Sum up . f
number of 1/cos(angle) of Sumof L/Vo
injecting particles

injecting injecting particles : :
particles at defined surface in the geometfical cell

e,/ \ |/
i E

Scoring I%SLAC) 14

Keys of G4THitsMap

» All' provided primitive scorer classes use G4THitsMap<G4double>.

» By default, the copy number is taken from the physical volume to which
G4MultiFunctionalDetector is assigned.

» If the physical volume is placed only once, but its (grand-)mother volume is
replicated, use the second argument of the constructor of the primitive
scorer to indicate the level where the copy number should be taken.

e.g. G4PSCellFlux(G4Steing hame, G4int depth=0)

Key should be taken =P See exampleNQ07
from upper =P Copy No O CopyNo 1 Copy No 2

geometry hierarchy/

Scorer A e—o Copy No
Scorer Be 0 /

» If your indexing scheme is more complicated (e.g. utilizing copy numbers of
more than one hierarchies), you can override the virtual method GetIndex()

provided for all the primitive scorers.
Scoring | - M.Asai (SLAC)

For example...

MyDetectorConstruction::Construct()
{ ... G4LogicalVolume* myCellLog = new G4LogicalVolume(...);
G4VPhysicalVolume* myCellPhys = new G4PVParametrised(...);

G4MultiFunctionalDetector™ myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);
myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux™);

myScorer->Register(totalSurfFlux);
G4VPrimitiveSensitivity* totalDose = new G4PSDoseDeposit(™TotalDose”);
myScorer->Register(totalDose);

No need of implementing
sensitive detector |
Scoring | - M.Asai (SLAC)

Creating your own scorer

» Though we provide most commonly-used scorers, you may want to create your own.

» If you believe your requirement is quite common, just let us know, so that we will add
a New scorer.

G4VPrimitiveScorer is the abstract base class.
class G4VPrimitiveScorer

{

public:
G4VPrimitiveScorer(G4String name, G4int depth=0);
virtual ~G4VPrimitiveScorer();

protected:
virtual G4bool ProcessHits (G4Step*,

G4TouchableHistory*)

virtual G4int Getlndex (G4Step*);

public:
virtual void Initialize (G4HCofThisEvent*);
virtual void EndOfEvent (G4HCofThisEvent*);
virtual void clear ();

|

GetIndex() has already been introduced. Other four methods written in yellow will be
discussed at “Scoring 2" talk. Scoring | - M.Asai (SLAC) 17

Filter class

G4VSDEFilter

» G4VSDFilter can be attached to G4VSensitiveDetector and/or

G4VPrimitiveSensitivity to define which kinds of tracks are to be scored.

» E.g., surface flux of protons can be scored by G4PSFlatSurfaceFlux with a filter

that accepts protons only.

G4VSensitiveDetector

/ k G4VSDFilter

userSensitiveDetector G4MultiFunctionalDetector

G4VPrimitiveSensitivity 1

GASDParticleFilter ‘

G4PSDoseScorer LL userFilter

Scoring | - M.Asai (SLAC) 19

List of provided filter classes

G4SDChargedFilter, G4SDNeutralFilter

» Accept only charged/neutral tracks, respectively
G4SDKineticEnergyFilter

» Accepts tracks within the defined range of kinetic energy.
G4SDParticleFilter

» Accepts tracks of registered particle types
G4SDParticleWithEnergyFilter

» Accepts tracks of registered particle types within the defined range of kinetic
energy

G4VSDFilter

» Abstract base class which you can use to make your own filter
class G4VSDFilter

{

public:
G4VSDFilter(G4String name);
virtual ~G4VSDFilter();
public:
virtual G4bool Accept (const G4Step*) const = 0;

Scoring | - M.Asai (SLAC)

For example...

MyDetectorConstruction::Construct()

{...

G4LogicalVolume* myCellLog = new G4LogicalVolume(...);

G4VPhysicalVolume* myCellPhys = new G4PVParametrised(...);
G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer™);
G4SDManager: :GetSDMpointer()->AddNewDetector(myScorer);
myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);
myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(“ProtonSurfFlux”);
G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

Scoring | - M.Asai (SLAC)

Accumulating scores for a run

>

A tip for scoring

For scoring purposes, you need to accumulate a physical quantity (e.g. energy
deposition of a step) for entire run of many events. In such a case, do NOT sum
up individual energy deposition of each step directly to a variable for entire run.

» Compared to the total sum for entire run, each energy deposition of single
step is too tiny. Rounding error problem may easily happen.

» Total energy deposition of 1 million events of 1 GeV incident particle
ends up to 1 PeV (101> eV), while energy deposition of each single step

is O(1 keV) or even smaller.

Create your own Run class derived from G4Run, and implement
RecordEvent(const G4Event™) virtual method. Here you can get all output of the
event so that you can accumulate the sum of an event to a variable for entire
run.

» RecordEvent(const G4Event™) is automatically invoked by G4RunManager.

» Your run class object should be instantiated in GenerateRun() method of
your UserRunAction.

Scoring | - M.Asai (SLAC)

23

Customized run class

#include “G4Run.hh”
#include “G4Event.hh”
#include “G4THitsMap.hh”
Class MyRun : public G4Run
{
public:
MyRun();
virtual ~MyRun();
virtual void RecordEvent(const G4Event™);
private:
G4int nEvent;
G4int totalSurfFluxID, protonSurfFluxID, totalDoselD;
G4THitsMap<G4double> totalSurfFlux;
G4THitsMap<G4double> protonSurfFlux;
G4THitsMap<G4double> totalDose;

G4THitsMap<G4double>* eventTotalSurfFlux;
G4THitsMap<G4double>* eventProtonSurfFlux;

G4THitsMap<G4double>* eventTotalDose
public:
... access methods ...

Implement how you accumulate
event data

¥

Scoring | - M.Asai (SLAC) 24

Customized run class

MyRun::MyRun() : nEvent(0) name of G4MultiFunctionalDetector object

{
G4SDManager* SDM = G4SDManager:: GetSDMpointer():

totalSurfFluxID = SDM->GetCollectionID("myCellScorer/TotalSurfFlux™);
protonSurfFluxID = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux™);
totalDoseID = SDM->GetCollectionID("myCellScorer/TotalDose"™);

; name of G4VPrimitiveSensitivity object
void MyRun::RecordEvent(const G4Event* evt)

{
nEvent++;
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
eventTotalSurfFlux = (G4THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));
eventProtonSurfFlux = (G4THitsMap<G4double>*)(HCE->GetHC(protonSurfFluxID));
eventTotalDose = (G4THitsMap<G4double>*)(HCE->GetHC(totalDose));
totalSurfFlux += *eventTotalSurfFlux;

No need of loops.
+= operator is provided !

protonSurfFlux += *eventProtonSurfFlux;
totalDose += *eventTotalDose;

Scoring | - M.Asai (SLAC)

RunAction with customized run

G4Run* MyRunAction::GenerateRun()
{ return (new MyRun()); *
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{
MyRun* theRun = (MyRun*)aRun;
// ... analyze / record / print-out your run summary.
// MyRun object has everything you need ...

¥

» As you have seen, to accumulate event data, you do NOT need
» Event / tracking / stepping action classes
» All'you need are your Run and RunAction classes.

» With newly introducing concrete sensitivity classes, you do NOT even need
» Sensitive detector implementation

—) Refer to exampleNO7

Scoring | - M.Asai (SLAC) 26

Accessing to a hits map

G4THitsMap<G4double> is an STD map, mapping a key (G4int) to a pointer to
a double value, i.e. equivalent to std::map<G4int,G4double*>

G4HCofThisEvent* HCE = evt - >GetHCofThisEvent ();
G4THitsMap<G4double>* evtMap
= (G4THitsMap<G4double>*)(HCE->GetHC(colID));
To get humber of entries
G4int n = evtMap-> entries ();
To access to each entry sequentially

std::map<G4int,G4double*>::iterator itr
= evtMap->GetMap()->begin();
for(; itrl= evtMap->GetMap()->end() ;dtr++)

{ Gdint key = (itr-> first), Pointer is returned.
G4double val = *(itr-> second); }

To access to a double value with a key

G4double* pVal = (*evtMap)[key |;
if(pVal) val =*pVal; Null pointer is returned if the

key does not exist in the map.

Scoring | - M.Asai (SLAC) 27

