

Jason Glyndwr Ulery For the ALICE Collaboration University of Frankfurt

31 May 2011 High-PT Probes of High-Density QCD at the LHC

- Introduction
- I_{AA}
- Fourier Decomposition of Two-Particle Correlations
- Three-Particle Correlations
- Summary

A Large Ion Collider Experiment

Time Projection Chamber Tracking

Inner Tracking System Vertexing

Motivation

- Jets: cone of hadrons produced from a hard scattering of partons.
 - calculable in pQCD
- Study in pp to understand fragmentation.
- Probe medium created in heavy-ion collisions.
 - Study jet ⇔ medium interaction.

- Select intermediate or high-p_T trigger particles.
- Calculate angle between trigger and other particles.
 - $\Delta \phi = \phi_{\text{Trigger}} \phi_{\text{Assoc}}$
 - $\Delta \eta = \eta_{\text{Trigger}} \eta_{\text{Assoc}}$
- Background.
 - Flow correlated with trigger particle.

- Correlation function built from the ratio of the signal and mixed events.
 - Mixed events correct to detector acceptance and 2-particle pair acceptance.

$$C(\Delta\phi,\Delta\eta) = \frac{N_{mixed}}{N_{triggered}} \frac{d^2 N_{triggered}}{d^2 N_{mixed}} \frac{d\Delta\phi d\Delta\eta}{d\Delta\phi d\Delta\eta}$$

- No background subtraction.
- Low p_{τ} shows near-side ridge and broad away-side.
- High p_{τ} near-side peak dominated.

- Change in unsubtracted correlation function for very small changes in centrality.
- Double peaked structure observed in most central.

- Δη gap
 suppresses
 near-side peak
- Remaining near-side structure dominated by the ridge.

Fourier Analysis at Large $\Delta\eta$

- Fit by <cos(n∆φ)>
 2-particle Fourier coefficients.
- Fitting up to the n=5 can describe shape to the 0.1% level.

Fourier Analysis at Large $\Delta \eta$

- Correlation well described by the first 5 Fourier coefficients.
- Almost no improvement with the addition of the next 5.

Fourier Analysis at Large $\Delta \eta$

- Expect away-side to be jet dominated at high p_T.
- Shape differs at high p_T but still
 well fit by first 5
 Fourier
 coefficients, but
 improvement
 when using more
 coefficients.

- Fourier coefficients shown as a function of trigger p_{τ} for different associated p_{τ}
- Coefficients increase with associated p_τ.
- n=2 amplitude increase as we go towards midcentral.

- Fourier coefficients shown as a function of trigger p_{τ} for different associated p_{τ}
- Coefficients increase with associated p_τ.
- n=2 amplitude increase as we go towards midcentral.

- Fourier coefficients shown as a function of trigger p_{τ} for different associated p_{τ}
- Coefficients increase with associated p_τ.
- n=2 amplitude increase as we go towards midcentral.

- Fourier coefficients shown as a function of trigger p_{τ} for different associated p_{τ}
- Coefficients increase with associated p_τ.
- n=2 amplitude increase as we go towards midcentral.

- Fourier coefficients shown as a function of trigger p_{τ} for different associated p_{τ}
- Coefficients increase with associated p_τ.
- n=2 amplitude increase as we go towards midcentral.

Global Fit

- Simultaneous fit of all trigger and associated p_T bins.
- Flow factorizes
 - Correlations should be flow dominated where the global fit matches the individual fits.
- Deviates at high p_{T} .

Global Fits

Adare QM11

Low-p_τ correlation well described by the global fit.

• High- p_{τ} correlation not described by the global fit.

Global Fit v_n

Adare QM11

• v_2 dominates at mid-central as expected from collision geometry

- v₃ dominates in 0-2%
 - describes double humped away side

v₂ Comparison

Adare QM11

- Global fit elliptic flow has good agreement with the 2-particle cumulant method.
- Both methods should contain similar non-flow and fluctuation effects.

axriv: 1105.3865

 Global fit triangular flow has good agreement with the 2-particle cumulant triangular flow measurements

- Modification of the yields relative to:
 - pp for I_{AA}
 - peripheral Pb-Pb for I_{CP}
- ZYAM assumption for background subtraction.
 - v₂ from ALICE flow measurements.
 - done at high enough p_T that jet signal dominates over flow modulation in background.

Grosse-Oetringhaus QM11

AA

Points: no flow subtraction Line: v_2 subtracted

- Central:
 - Near-side greater then 1
 - Away-side suppressed as expected for energy loss
- Peripheral consistent with 1

STAR Comparison

- STAR results v_n subtracted and compared to d+Au.
- Different trigger bias at different energies.
 - probing different energy jets with different fraction of energy in trigger particle

PHOENIX Comparison

- PHOENIX results v_n subtracted and compared to d+Au.
- Different trigger bias at different energies.
 - probing different energy jets with different fraction of energy in trigger particle

Theory Comparison

₹ ALICE preliminary Away side ALICE preliminary Near side $|\eta| < 1.0$ |n| < 1.00-5% / pp 0-5% / pp AdS/CFT AdS/CFT Pb-Pb 2.76 TeV Pb-Pb 2.76 TeV 2.0 ASW ASW YaJEM YaJEM YaJEM-D YaJEM-D X-N Wang 1.5 0 0 1.02.0 0.5 Points: flat pedesta Line: v., subtracted Points: flat pedestal Line: v., subtracted 0.0 8 10 2 4 6 10 p{T,assoc} (GeV/c) p_{T,assoc} (GeV/c) ALI-PREL-6071

Near-side enhancement:

- reproduced by AdS/CFT and ASW
- YaJEM overpredicts the enhancement

Away-side suppression:

- reproduced by AdS/CFT, ASW, YaJEM-D
- YaJEM over predicts the suppression
- X-N Wang under predicts the suppression

- Interested in studying the away side.
- Want to see what causes the double peaks structure.
 - Mach-cone
 - Cerenkov gluon radiation
 - Deflected Jets
 - deflected by radial flow
 - path length dependent energy loss

• V₃

- Select an intermediate or high-p_T trigger particle.
- Look at relative angles between trigger and 2 other particles.

$$\Delta \phi_1 = \phi_{\text{Trigger}} - \phi_{\text{Associated,1}}$$
$$\Delta \phi_2 = \phi_{\text{Trigger}} - \phi_{\text{Associated,2}}$$

- Select an intermediate or high-p_T trigger particle.
- Look at relative angles between trigger and 2 other particles.

Both from jet: $\Delta \phi_1 = \phi_{\text{Trigger}} - \phi_{\text{Associated},1}$ $\Delta \phi_2 = \phi_{\text{Trigger}} - \phi_{\text{Associated,2}}$

- Select an intermediate or high-p_T trigger particle.
- Look at relative angles between trigger and 2 other particles.

1 from jet and 1 from background: $\Delta \phi_1 = \phi_{\text{Trigger}} - \phi_{\text{Associated},1}$ $\Delta \phi_2 = \phi_{\text{Trigger}} - \phi_{\text{Associated,2}}$

- Select an intermediate or high-p_T trigger particle.
- Look at relative angles between trigger and 2 other particles.

Both from background:
$\Delta \phi_1 = \phi_{\text{Trigger}} - \phi_{\text{Associated},1}$
$\Delta \phi_2 = \phi_{\text{Trigger}} - \phi_{\text{Associated,2}}$

Unsubtracted Signal

- Contains
 - 3-particle jet-like correlations
 - 2-particle jet-like correlations
 - 2-particle flow correlations
 - 3-particle flow correlations
 - 2-particles jet-like correlated while 3rd is flow correlated

Trigger and Associated Correlated

- 2-Particle correlations between trigger and associated particle.
- Contains 2-particle jet-like and flow correlations.
- Unsubtracted 2-particle correlations folded with 3rd from mixed event.
- Mixed event is normalized using ZYAM assumption on the 2particle correlation.
 - ALICE flow values used for ZYAM determination from v₂, v₃, and v₄.

- 2-particle correlations between the two associated particles.
 - jet-like and flow correlations
- Constructed by mixing trigger particle with pairs of associated from a different event.
- Normalized such that background subtracted 3particle correlation is ZYAM.

Trigger-Associated Jet-Like X Flow

- Jet like correlation could flow with the 3rd particle.
- Background subtracted 2-particle jet-like correlation folded with the trigger associated flow distribution.
 - Uncertainty in the jet-like flow, trigger v_n used.
 - ALICE flow values for v_2 , v_3 , and v_4 used.

Associated-Associated Jet-Like X Flow

- Background subtracted Associated-Associated distribution may flow with trigger particle.
- Non-flow structure on the associated-associated correlation modulated with the flow between trigger and associated.
 - ALICE flow values for v₂, v₃, and v₄ used

ALI-PERF-2894

3-Particle Flow

- All three particles can be flow correlated.
- When considering v₂, v₃, and v₄ flow components the 3-particle flow contains terms for:
 - $V_2^T V_2^{A1} V_4^{A2}$
 - $V_2^T V_4^{A1} V_2^{A2}$
 - $V_4^T V_2^{A1} V_2^{A2}$

Toy Model

- Want to show with the model we can distinguish between jet correlations and flow.
- Similar 2-particle correlations:
 - 1 from small near-side jet + flow (v₂, v₃, v₄) no away-side jet
 - 2 from near and away-side jet no flow

- No away-side 3-particle signal where away-side is only from flow.
- Away-side signal present where it is generated as a jet.

Projections

Data Results

- 0-2% Pb-Pb
- 2.5<p_Trig<4 GeV/c</p>
- 1<p_Assoc<2 GeV/c</p>
- Half ALICE 2-particle flow values used for v_2 , v_3 , and v_4 .
- Signal to background ~1/1000
- Contribution to the 2-particle signal not straight forward and depends on spread of away-side with respect to detector Δη acceptance.

Data Results

- 0-2% Pb-Pb
- 2.5<p_Trig<4 GeV/c</p>
- 1<p_Assoc<2 GeV/c</p>
- Half ALICE 2-particle flow values used for v₂, v₃, and v₄.
- Side peaks expected for conical emission seen.

Data Results

- 0-2% Pb-Pb
- 2.5<p_Trig<4 GeV/c</p>
- 1<p_Assoc<2 GeV/c</p>
- Systematic errors from:
 - Flow in blue and green varied between 0 and ALICE 2-particle cumulant
 - Normalization in gray

Comparison to STAR

 Similar correlation shape seen in ALICE as was seen in STAR.

Summary

- Fourier decomposition of $\Delta\eta$ separated 2-particle azimuthal correlations.
 - Flow factorization works at low p_{τ} , but at higher p_{τ} where the correlations are jet dominated.
 - Good agreement with other flow measurements
- AA
 - Away side suppression in central Pb-Pb
 - Near side enhancement in central Pb-Pb
- Three-particle azimuthal correlations
 - Similar structure as was seen in STAR
 - Consistent with conical emission.