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• What is the ridge?  What are its properties?

Ridge with      a high-pT trigger
Ridge without a high-pT trigger

• Many different theoretical models of the ridge
• The momentum kick model & the near-side ridge data
• Ridge as a tool to probe early parton momentum distribution
• Momentum kick model analysis of CMS pp ridge data 
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What is the ridge ?

• Occurrence of a near-side “jet” and an away-side jet
• We detect associated particles in coincidence with the jet 
• We measure the φ and η of these associated particles, 

Δφ=φ (associated particle)- φ (jet trigger)
Δη=η (associated particle) - η (jet trigger)

• The probability distribution in Δφ- Δη is in the form of 
a ridge and a peak 
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Two-particle autocorrelation
without a high-pT trigger STAR (PRC73,064907(‘06))
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Helena Białkowska,

CMS pp data at 7 TeV
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CMS PbPb data at 2.76 TeV, arxiv:1105.2438
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The CMS ridge data raise many questions

1. Is the ridge for real (removed by v3,fluctuating initial conditions? etc) ?
2. How do the ridges arise in pp and AA collisions? 
3. Can the ridges at LHC and RHIC be described by the same physical

phenomenon?
4. If so, what are the similarities and differences? 
5 Why is the ridge yield greatest at 1< pT <3 GeV/c? 
6      What interesting physical quantities do the ridge data reveal? 
7 What is the relationship between 

the ridges with a high-pT trigger 
and the ridges in autocorrelation ?
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Many Ridge Models (I)
• C.Y.Wong,PhyRevC76,054908(’07);Chin.Phys.Lett.25,3936(’08);PhysRevC78,064905

8);J.PhysG35,104085(’08);PhysRevC80,034908(’09);PhysRevC80,054917(’09)
• S.A.Voloshin, Phys. Lett. B632, 490 (`06)
• E. Shuryak, Phys.Rev.C76, 047901 (`07)
• V. S. Pantuev, arxiv:0710.1882(’07)
• C. B. Chiu and R.C. Hwa,Phys. Rev. C76, 047901 (‘08)
• N. Armesto, C. A. Salgado, U. A. Wiedemann, Phys.Rev.C76,054908(’07)
• A.Dumitru,Y.Nara,B.Schenke,M.Strickland, Phys.Rev.C78,024909(’08)
• A.Majumder,B.Mueller,and S.A.Bass, Phys. Rev. Lett. 99, 042301 (‘07)
• R.Mizukawa,T.Hirano,M.Isse,Y.Nara,A.Ohnishi,J.Phys.G35,104083(’08)
• S.Gavin,L.McLerran,G.Moschelle,Phys.Rev.C79,051902(’09)
• A. Dumitru,F. Gelis, L. McLerran, and R. Venugoplan, Nucl.Phys.A810,91(’09)
• Y.Hama et al,arxiv:1012.1342
• Jianyong Jia, Eur. Phys. J. C 61, 255 (2009)
• A. Dumitru et al.,Phys. Lett. B697 21 (2011)
• K. Werner, Iu. Karpenko, K. Mikhailov,T. Pierog, Phys.Rev.C82,044904(’10);

arXiv:1104.3269
• R. C. Hwa, C. B. Yang, Phys. Rev. C 83, 024911 (2011)
• T. A. Trainor, arXiv:1008.4757
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Many Ridge Models (II)
• B. A. Arbuzov, E. E. Boos, V. I. Savrin, arXiv:1104.1283
• M.Yu. Azarkin, I.M. Dremin, A.V. Leonidov, arXiv:1102.3258
• H. R. Grigoryan, Yuri V. Kovchegov arXiv:1012.5431
• I. Bautista, J. Dias de Deus, C. Pajares, arXiv:1011.1870
• I.O. Cherednikov, N.G. Stefanis, arXiv:1010.4463
• Igor M. Dremin, Victor T. Kim, arXiv:1010.0918
• E. Levin, A. H. Rezaeian arXiv:1105.3275
• B. Alver, G. Roland, Phys.Rev.C82, 034913(2010)
• B.A.Alver, C. Gombeaud, M. Luzum, J-Y. Ollitrault, Phys.Rev.C82, 034913(2010).
• Many more to come ………..
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Types of models

• Δφ correlation by flow 
• Δφ correlation by jet collisions
• etc,etc,etc
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Transverse flow model (Voloshin & Shuryak)

Width too wide?
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Gavin,McLerran,Moshelli(BNLWorkshop’09)

A.Dumitru,F. Gelis, L. McLerran, and R. Venugoplan, 
Nucl.Phys.A810,91(’08)

• Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian,T. Lappi, R. Venugopalan,
Phys. Lett. B697 21 (2011)

Δφ correlations occur by flow without a jet
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Hama et al. arxiv:1012.1342
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K. Werner, Iu. Karpenko, K. Mikhailov, T. Pierog, 
Phys.Rev. C82 (2010) 044904, arXiv:1011.0375,1104.3269
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K. Werner, Iu. Karpenko, T. Pierog,(arxiv:1011.0375)

Theoretical EPOS results for pp at 7 TeV

With hydrodynamical flow No flow



18

EPOS theory
Experimental data
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J. Takahashi et al. PRL103, 242301 (’09)

Fluctuating initial conditions can lead to two-particle correlations
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Remarks
Jets and minijets in the near-side lead to groups of particles 
in a pointed direction, and contribute to v3.  They are not 
hydrodynamical flows.   Experimental v3 may include a large 
contribution of jets and minijets that are not hydrodynamical. 

Quantum mechanics has a tendency to smooth out classical
granularity.  Particles in a classical cascade calculations are 
not real particles. They are test particles. They are cells in the 
phase space of the Wigner function f(x,y). We need to  use a 
large number of test particles to represent the Wigner 
function f(x,p) in a single calculation. [C.Y.Wong, Phys.Rev.C
25, 1460–1475 (1982)]. 

More work remains to look into the quantum treatment of the 
initial conditions from the Wigner function viewpoint!
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Correlation coming from jet-medium collision

• Momentum kick model 
C.Y.Wong (Phys.Rev.C76,054908(’07),….
medium partons kicked by jet

• Local enhancement of temperature
R.Hwa & C.B.Yang (Phys.Rev.C83,024911(’10)
medium partons gets higher temperature after the 
passage of jet 
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Experimental data implies that 
ridge particles are medium partons kicked by the jet

~

1. Ridge yield increases with increasing N_participants
2. Ridge yield nearly independent of the jet trigger properties
3. Tjet > Tridge > Tbulk
4. B/M|ridge~B/M|bulk,   but  B/M|jet ≠ B/M|bulk

→ ridge particles are medium partons
5.   Δφ ~ 0 implies that the ridge particles acquire additional 

longitudinal momentum from the jet.
→ ridge particles and the jet are related by collisions

6. Ridge particles nearly flat in Δη
→ the flat Δη comes from the ridge particles momentum 
distribution before they are kicked by the jet

C.Y.Wong, Phy.Rev.C76,054908(’07)
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Schematic picture of the momentum kick model

Wong, arxiv:1105.5871

CMS pp
data
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Jet fragments come in high pT and low pT
Evidences:
1. STAR autocorrelation measurements with low pT

particles show a (Δφ~0,Δη~0) minijet component
2. PHENIX two-particle correlations with trigger 

hadrons of pT down to 2 GeV gives    
NJF ~  0.15 +  (0.10/GeV)  <pT

trig>
which is non-zero even down to <pT

trig> →0
Therefore, 
1. Both high pT hadrons and low pT hadrons 

can be used as markers for jet
2    Low pT hadrons can also come from the kicked 

medium partons.
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High pT and low pT triggers

• High pT trigger gives the correlations of 
(Near-side jet fragment) - (Near-side jet fragment)
(Near-side jet fragment) - (Near-side kicked medium parton)

• Low pT trigger gives the correlations of 
(Near-side jet fragment) - (Near-side jet fragment)
(Near-side jet fragment) - (Near-side kicked medium parton)
(Near-side kicked med parton) - (Near-side kicked med parton)

• For pp collisions, NKMP-NKMP contribution is small.

Momenum kick model unifies the description of ridges
with high-pT and low-pT triggers
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The momentum distribution in the momentum kick 
model consists of two components
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Initial parton momentum distribution
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The width in Δφ depends on the magnitude of qL.

at pt=2 GeVL

L

L
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The pp near-side jet data can be described by 
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Data from
PRL95,152301(05)  & J. Phy. G34, S679 (07)

Momentum Kick Model explains STAR ridge data
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Why is the ridge mpost prominent between 
1<pT<3 GeV/c?

qL=1 GeV/c
qL=2 GeV/c



C.Y.Wong,HPHD2011 33

Momentum kick model gives the correct prediction for PHOBOS 
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Momentum Kick Model explains PHENIX ridge data
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Early parton rapidity distribution has a plateau structure
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Early parton rapidity distribution is intermediate
between those of pp and AA collisions

This is consistent with the direction of the evolution
of the parton rapidity distributions.
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We need jet trajectory calculation to get <Nk>(b).



C.Y.Wong,HPHD2011 38

Energy dependence, mass dependence and RAA
are well reproduced in the momentum kick model

We obtain the jet-(medium parton) cross section & rate of absorption
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Important information extracted from near-
side ridge data at s1/2=200 GeV

1 The rapidity distribution of early partons has a plateau structure 

2 qL=0.8-1.0 GeV, longitudinal momentum kick per parton-parton
collision 

3  fR <Nk> =  3.0-3.8  for the most central Au+Au collisions 

4 The inverse slope TMP for early partons is intermediate 

between TJF and Tbulk

5 The jet-(medium parton) cross section and rate of absorption in 

jet-(medium parton) collisions
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Momentum kick model analysis of CMS pp data

• We get the size of proton from pp cross sections. We 
find that R~0.8 fm at 7 TeV

• We get the density of partons from Landau model 
prediction of average multiplicity N_ch~120 and 
participant calculations of proton as Chou-Yang droplets.

• We need to extend the longitudinal momentum 
by the beam rapidity, and scale quantities that depend on 
the transverse momentum by

<pT(LHC)>/<pT(RHIC)>  ~ 1.4
Then there is only one free parameter, qL=2.0 GeV,
which is greater than qL=0.8-1.0 GeV for RHIC.

C.Y.Wong arxiv:1105.5871
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Results of jet trajectory calculation
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Momentum kick model results for pp collisions at 7 TeV
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Why is the ridge most prominent between 1<pT<3 GeV/c?

qL=1 GeV/c
qL=2 GeV/c
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The momentum kick model results for the distribution in 
(Δφ, Δη) (with the top truncated)
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Conclusions
• Many ridge models and many questions on the extraction of 

the ridge

In the momentum kick model

• The ridge particles associated with the near-side jet in AA 
collisions at RHIC and in pp collisions at LHC can be 
described as medium partons kicked by the jet

• They carry information on the early parton momentum 
distribution and the magnitude of the momentum kick.

• The momentum kick model provides a unified description of 
the ridges in high pT and low pT.



C.Y.Wong,HPHD2011 46

Backup slides
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Ridge yield is a maximum at Δφ~0
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There can be systematic errors in the ZYAM ridge yields
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