Status of Theoretical Understanding of "the Ridge" Cheuk-Yin Wong Oak Ridge National Laboratory

- What is the ridge? What are its properties? Ridge with a high-pT trigger Ridge without a high-pT trigger
- Many different theoretical models of the ridge
- The momentum kick model & the near-side ridge data
- Ridge as a tool to probe early parton momentum distribution
- Momentum kick model analysis of CMS pp ridge data
- Conclusions

C.Y.Wong, Phy.Rev.C76,054908('07) C.Y.Wong, ChinesePhys.Lett.25,3936('08) C.Y.Wong, J.Phys.G35,104085('08) C.Y.Wong, Phys. Rev.C78,064905('08) C.Y.Wong, Phys. Rev.C80,034908('08) C.Y.Wong, Phys. Rev.C80,054917('08) C.Y.Wong, arxiv:1105.5871 ('11)

- Occurrence of a near-side "jet" and an away-side jet
- We detect associated particles in coincidence with the jet
- We measure the φ and η of these associated particles, Δφ=φ (associated particle)- φ (jet trigger) Δη=η (associated particle) - η (jet trigger)
- The probability distribution in $\Delta\phi$ $\Delta\eta$ is in the form of a ridge and a peak

Two-particle autocorrelation without a high-pT trigger

STAR (PRC73,064907('06))

CMS pp data at 7 TeV

Helena Białkowska, Epiphany 2011, HB

1

CMS PbPb data at 2.76 TeV, arxiv:1105.2438

The CMS ridge data raise many questions

- 1. Is the ridge for real (removed by v3,fluctuating initial conditions? etc) ?
- 2. How do the ridges arise in *pp* and *AA* collisions?
- 3. Can the ridges at LHC and RHIC be described by the same physical phenomenon?
- 4. If so, what are the similarities and differences?
- 5 Why is the ridge yield greatest at $1 < p_T < 3$ GeV/c?
- 6 What interesting physical quantities do the ridge data reveal?
- 7 What is the relationship between the ridges with a high- p_T trigger and the ridges in autocorrelation ?

Many Ridge Models (I)

- C.Y.Wong, PhyRevC76,054908('07); Chin.Phys.Lett.25,3936('08); PhysRevC78,064905 8); J.PhysG35,104085('08); PhysRevC80,034908('09); PhysRevC80,054917('09)
- S.A.Voloshin, Phys. Lett. B632, 490 (`06)
- E. Shuryak, Phys.Rev.C76, 047901 (`07)
- V. S. Pantuev, arxiv:0710.1882('07)
- C. B. Chiu and R.C. Hwa, Phys. Rev. C76, 047901 ('08)
- N. Armesto, C. A. Salgado, U. A. Wiedemann, Phys.Rev.C76,054908('07)
- A.Dumitru, Y.Nara, B.Schenke, M.Strickland, Phys. Rev. C78,024909('08)
- A.Majumder, B.Mueller, and S.A.Bass, Phys. Rev. Lett. 99, 042301 ('07)
- R.Mizukawa, T.Hirano, M.Isse, Y.Nara, A.Ohnishi, J.Phys.G35,104083('08)
- S.Gavin,L.McLerran,G.Moschelle,Phys.Rev.C79,051902('09)
- A. Dumitru, F. Gelis, L. McLerran, and R. Venugoplan, Nucl. Phys. A810, 91('09)
- Y.Hama et al, arxiv:1012.1342
- Jianyong Jia, Eur. Phys. J. C 61, 255 (2009)
- A. Dumitru et al., Phys. Lett. **B697** 21 (2011)
- K. Werner, Iu. Karpenko, K. Mikhailov, T. Pierog, Phys. Rev. C82,044904('10); arXiv:1104.3269
- R. C. Hwa, C. B. Yang, Phys. Rev. C 83, 024911 (2011)
- T. A. Trainor, arXiv:1008.4757

Many Ridge Models (II)

- B. A. Arbuzov, E. E. Boos, V. I. Savrin, arXiv:1104.1283
- M.Yu. Azarkin, I.M. Dremin, A.V. Leonidov, arXiv:1102.3258
- H. R. Grigoryan, Yuri V. Kovchegov arXiv:1012.5431
- I. Bautista, J. Dias de Deus, C. Pajares, arXiv:1011.1870
- I.O. Cherednikov, N.G. Stefanis, arXiv:1010.4463
- Igor M. Dremin, Victor T. Kim, arXiv:1010.0918
- E. Levin, A. H. Rezaeian arXiv:1105.3275
- B. Alver, G. Roland, Phys.Rev.C82, 034913(2010)
- B.A.Alver, C. Gombeaud, M. Luzum, J-Y. Ollitrault, Phys.Rev.C82, 034913(2010).
- Many more to come

Types of models

- $\Delta \phi$ correlation by flow
- $\Delta \phi$ correlation by jet collisions
- etc,etc,etc

Transverse flow model (Voloshin & Shuryak)

Gavin, McLerran, Moshelli (BNLWorkshop'09)

Blast wave + Glasma describes height and ϕ width of Soft Ridge

- blast wave tuned to single particle spectra
- Glasma tuned to dN/dy
- Energy and Centrality dependence

A.Dumitru, F. Gelis, L. McLerran, and R. Venugoplan, Nucl.Phys.A810,91('08)

 Dumitru, K. Dusling, F. Gelis, J. Jalilian-Marian, T. Lappi, R. Venugopalan, Phys. Lett. B697 21 (2011)

$\Delta \phi$ correlations occur by flow without a jet

ig. 9. Temperature distributions as functions of r for cylindrical transverse expansion coupled to ongitudinal expansion. Each curve is labelled by the time (in fm) that has elapsed since the collision. In (a) hydrodynamic behavior is assumed to commence at $t_0 = 1$ fm, while in (b), $t_0 = 2$ fm.

Hama et al. arxiv:1012.1342

K. Werner, Iu. Karpenko, K. Mikhailov, T. Pierog,

Phys.Rev. C82 (2010) 044904, arXiv:1011.0375,1104.3269 The EPOS Model

EPOS is a parton model, with many binary parton-parton interactions, each one creating a parton ladder.

- Energy-sharing : for cross section calculation AND particle production (Parton Based Gribov-Regge Theory)
- Parton Multiple scattering
- Outshell remnants
- Screening and shadowing via unitarization and splitting
- Collective effects for dense systems

EPOS can be used for minimum bias hadronic interaction generation (h-p to A-B) from 100 GeV (lab) to 1000 TeV (cms).

High Density Core Formation

- Heavy ion collisions or very high energy proton-proton scattering:
 - the usual procedure has to be modified, since the density of strings will be so high that they cannot possibly decay independently : core

- Each string splitted into a sequence of string segments, corresponding to widths $\delta \alpha$ and $\delta \beta$ in the string parameter space
- If energy density from segments high
 - segments fused into core
- If low density (corona)
 - segments remain hadrons

T. Pierog, KIT - 33/19

K. Werner, Iu. Karpenko, T. Pierog, (arxiv:1011.0375)

Figure 1: (Color online) Two particle correlation function R

Theoretical EPOS results for pp at 7 TeV

Fluctuating initial conditions can lead to two-particle correlations

J. Takahashi et al. PRL103, 242301 ('09)

FLOW FLUCTUATIONS

$$\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos n(\phi - \psi_n)$$
$$\implies \left\langle \frac{dN_{\text{pairs}}}{d\Delta\phi} \right\rangle \stackrel{\text{(flow)}}{\propto} 1 + \sum_{n=1}^{\infty} 2\left\langle v_n^2 \right\rangle \cos n(\Delta\phi)$$
$$v_3 e^{3i\psi_3} \propto \varepsilon_3 e^{3i\Phi_3} \equiv -\frac{\{r^3 e^{3i\phi}\}}{\{r^3\}}$$

(Qin, Petersen, Bass, Muller, Phys. Rev. C 82, 064903 (2010); Qiu, Heinz, arXiv:1104.0650)

5/13

<u>Remarks</u>

Jets and minijets in the near-side lead to groups of particles in a pointed direction, and contribute to v3. They are not hydrodynamical flows. Experimental v3 may include a large contribution of jets and minijets that are not hydrodynamical.

Quantum mechanics has a tendency to smooth out classical granularity. Particles in a classical cascade calculations are not real particles. They are test particles. They are cells in the phase space of the Wigner function f(x,y). We need to use a large number of test particles to represent the Wigner function f(x,p) in a single calculation. [C.Y.Wong, Phys.Rev.C 25, 1460–1475 (1982)].

More work remains to look into the quantum treatment of the initial conditions from the Wigner function viewpoint!

Correlation coming from jet-medium collision

- Momentum kick model
 C.Y.Wong (Phys.Rev.C76,054908('07),.... medium partons kicked by jet
- Local enhancement of temperature R.Hwa & C.B.Yang (Phys.Rev.C83,024911('10) medium partons gets higher temperature after the passage of jet

Experimental data implies that

ridge particles are medium partons kicked by the jet

C.Y.Wong, Phy.Rev.C76,054908('07)

- 1. Ridge yield increases with increasing N_participants
- 2. Ridge yield nearly independent of the jet trigger properties
- 3. $T_{jet} > T_{ridge} > T_{bulk}$
- 4. $B/M|_{ridge} \sim B/M|_{bulk}$, but $B/M|_{jet} \neq B/M|_{bulk}$ \rightarrow ridge particles are medium partons
- 5. $\Delta \phi \sim 0$ implies that the ridge particles acquire additional longitudinal momentum from the jet.
 - → ridge particles and the jet are related by collisions
- 6. Ridge particles nearly flat in $\Delta \eta$

 \rightarrow the flat $\Delta\eta$ comes from the ridge particles momentum distribution before they are kicked by the jet

Schematic picture of the momentum kick model

Wong, arxiv:1105.5871 C.Y.Wong, HPHD2011

<u>Jet fragments come in high $p_{\underline{T}}$ and low $p_{\underline{T}}$ </u> Evidences:

- 1. STAR autocorrelation measurements with low pT particles show a ($\Delta \phi \sim 0, \Delta \eta \sim 0$) minijet component
- 2. PHENIX two-particle correlations with trigger hadrons of pT down to 2 GeV gives

 $N_{JF} \sim 0.15 + (0.10/GeV) < p_T^{trig} >$

which is non-zero even down to $< p_T^{trig} > \rightarrow 0$ Therefore,

- Both high pT hadrons and low pT hadrons can be used as markers for jet
- 2 Low pT hadrons can also come from the kicked medium partons.

High pT and low pT triggers

- High pT trigger gives the correlations of (Near-side jet fragment) - (Near-side jet fragment) (Near-side jet fragment) - (Near-side kicked medium parton)
- Low pT trigger gives the correlations of (Near-side jet fragment) - (Near-side jet fragment) (Near-side jet fragment) - (Near-side kicked medium parton) (Near-side kicked med parton) - (Near-side kicked med parton)
- For pp collisions, NKMP-NKMP contribution is small.

Momenum kick model unifies the description of ridges with high-pT and low-pT triggers

<u>The momentum distribution in the momentum kick</u> <u>model consists of two components</u>

$$\frac{dN_{ch}}{N^{trig} d\Delta \eta \ d\Delta \phi \ p_t \ dp_t} \bigg|_{total}$$

$$= f_{R} \frac{2}{3} \langle N_{k} \rangle \frac{dF}{d\Delta \eta \ d\Delta \phi \ p_{t} \ dp_{t}} \bigg|_{ridge} + f_{JF} \frac{dN_{jet \ fragment}}{d\Delta \eta \ d\Delta \phi \ p_{t} \ dp_{t}} \bigg|_{jet \ fragment}$$

 $\langle N_k \rangle$ is the number of kicked medium partons per jet

 $\langle N_k \rangle$ depends on impact parameter

 f_R and f_{JF} are the syrvival factor due to final state interactions.

$$\frac{dF}{d\eta \ d\phi \ p_t \ dp_t} \bigg|_{ridge} = \left[\frac{dF}{dy_i \ d\phi_i \ p_{t\,i} \ dp_{t\,i}} \frac{E}{E_i}\right]_{\vec{p}_i} = \vec{p}_f - q_L \vec{e}_{jet} \sqrt{1 - \frac{m^2}{m_t^2 \cosh^2 y}}$$

Initial parton momentum distribution

We parametrize the shape of the initial parton distribution by

$$\frac{dF}{dy \, d\phi \, p_t \, dp_t} = A \left(1 - X\right)^a \frac{\exp\left\{-\left(\sqrt{m^2 + p_t^2} - m\right)/T_{MP}\right\}}{\sqrt{m_d^2 + p_t^2}}$$

A is a normalization constant such that

$$\int \frac{dF}{dy \, d\phi \, p_t \, dp_t} \, dy \, d\phi \, p_t \, dp_t = 1$$

$$X = \frac{(p_0 + p_z)_{parton}}{(p_0 + p_z)_{parent}} = \frac{\sqrt{m^2 + p_t^2}}{m_b} \exp\{|y| - y_B\} \le 1$$

$$m = m_{parton} = m_{\pi}; \qquad y_B = y_{beam}$$

The parameters are :

<u>The width in $\Delta \phi$ depends on the magnitude of q_L .</u>

The pp near-side jet data can be described by

$$\frac{dN_{jet \ fragment}}{d\Delta\eta d\Delta\phi p_t dp_t} \bigg|_{pp} = N_{JF} A_{JF} \exp\left\{-\sqrt{m^2 + p_t^2} / T_{JF}\right\} \frac{\exp\left\{-\left((\Delta\phi)^2 + (\Delta\eta)^2\right) / 2\sigma^2\right\}}{2\pi\sigma^2}$$

$$A_{JF} = \frac{\exp\{m/T_{JF}\}}{T_{jet}(m+T_{JF})}$$
 is a normalization constant,

$$\sigma = \sigma_0 \frac{m_a}{\sqrt{m_a^2 + p_t^2}},$$

Parameters are: N_{JF} , T_{JF} , σ_0 and m_a . Empirically, N_{JF} , T_{JF} are linear function of p_t^{trig} .

Momentum Kick Model explains STAR ridge data

C.Y.Wong,HPHD2011

Why is the ridge mpost prominent between 1<pT<3 GeV/c?

32

Momentum kick model gives the correct prediction for PHOBOS

Momentum Kick Model explains PHENIX ridge data

Early parton rapidity distribution has a plateau structure

Early parton rapidity distribution is intermediate between those of pp and AA collisions

This is consistent with the direction of the evolution of the parton rapidity distributions.

We need jet trajectory calculation to get $\langle N_k \rangle$ (b).

Energy dependence, mass dependence and RAA are well reproduced in the momentum kick model

We obtain the jet-(medium parton) cross section & rate of absorption

C.Y.Wong,HPHD2011

Important information extracted from nearside ridge data at s^{1/2}=200 GeV

- 1 The rapidity distribution of early partons has a plateau structure
- 2 q_L=0.8-1.0 GeV, longitudinal momentum kick per parton-parton collision
- 3 $f_R < N_k > = 3.0-3.8$ for the most central Au+Au collisions
- 4 The inverse slope $T_{\rm MP}$ for early partons is intermediate between $T_{\rm JF}\,$ and $T_{\rm bulk}\,$
- 5 The jet-(medium parton) cross section and rate of absorption in jet-(medium parton) collisions

Momentum kick model analysis of CMS pp data

C.Y.Wong arxiv:1105.5871

- We get the size of proton from pp cross sections. We find that R~0.8 fm at 7 TeV
- We get the density of partons from Landau model prediction of average multiplicity N_ch~120 and participant calculations of proton as Chou-Yang droplets.
- We need to extend the longitudinal momentum by the beam rapidity, and scale quantities that depend on the transverse momentum by

 $< p_T(LHC) > / < p_T(RHIC) > ~ 1.4$

Then there is only one free parameter, $q_L=2.0$ GeV, which is greater than $q_L=0.8-1.0$ GeV for RHIC.

Results of jet trajectory calculation

41

Momentum kick model results for pp collisions at 7 TeV

Why is the ridge most prominent between 1<pT<3 GeV/c?

<u>The momentum kick model results for the distribution in</u> ($\Delta \phi$, $\Delta \eta$) (with the top truncated)

44

 Many ridge models and many questions on the extraction of the ridge

In the momentum kick model

- The ridge particles associated with the near-side jet in AA collisions at RHIC and in pp collisions at LHC can be described as medium partons kicked by the jet
- They carry information on the early parton momentum distribution and the magnitude of the momentum kick.
- The momentum kick model provides a unified description of the ridges in high pT and low pT.

Backup slides

<u>Ridge yield is a maximum at $\triangle \phi \sim 0$ </u>

$$\vec{p}_{tf} = \vec{p}_{ti} + q_L \vec{e}_{jet}$$

For the same magnitude of $|\vec{p}_{tf}|$ but different $\Delta \phi$, the magnitude of

 $|\vec{p}_{ti}|$ is smallest when $\Delta \phi = 0$.

The probability of initial partons with \vec{p}_{ti} is

$$\frac{dN_{i}}{p_{t\,i}dp_{t\,i}} \propto \frac{\exp\left\{-\left(\sqrt{m^{2}+p_{t\,i}^{2}}-m\right)/T\right\}}{\sqrt{m_{d}^{2}+p_{t\,i}^{2}}}.$$

Therefore, the ridge particle yield is a maximum at $\Delta \phi \approx 0$.

There can be systematic errors in the ZYAM ridge yields

