High-p_⊤ correlations at RHIC

Jana Bielcikova for the STAR Collaboration (NPI ASCR)

Many thanks to the PHENIX Collaboration for providing their results

High-p_T Probes of High-Density QCD at the LHC, Ecole Polytechnique, Palaiseau, May 30 - June 1, 2011

Outline:

- Motivation
- Ridge+conical emission vs triangular flow in A+A collisions
 ... a bit of history and new emerging concepts
- Correlations with identified trigger particles
- Correlations at forward rapidities in d+Au collisions

... probing the initial conditions

- γ-hadron correlations
- Summary

Probing QCD matter with high-p_T particles

p+p

Probing QCD matter with high-p_T particles

Au+Au

What happens to high- p_T particles/jets which pass through the medium? Are they similar to p+p or modified by the medium?

Tools:

- inclusive p_T spectra
- di-hadron correlations
- multi-hadron correlations
- γ-hadron correlations
- jets (γ-jets)
- jet-hadron correlations

this talk

"Jet-like" correlations: the method

Azimuthal correlations of high- p_{T} particles suggested to study jet and its interaction with medium on a statistical basis.

Correlated yield is related to ratio of di-hadron to single hadron "fragmentation functions":

$$D^{h_1h_2}(z_T, p_T^{\text{trig}}) = p_T^{\text{trig}} \frac{d\sigma_{AA}^{h_1h_2}/dp_T^{\text{trig}}dp_T}{d\sigma_{AA}^{h_1}/dp_T^{\text{trig}}}$$

 $R_{AA} \longrightarrow I_{AA} = \frac{D_{AA}(z_T, p_T^{\text{trig}})}{D_{nn}(z_T, p_T^{\text{trig}})} \qquad z_T = p_{T,assoc}/p_{T,trig}$

• A+A collisions: subtraction of v₂ needed

Contributions of higher Fourier harmonics v_n ? ... From slide 19 ...

Run 2: Jet-like correlations at intermediate p_T

Central Au+Au collisions at 200 GeV:

- intermediate p_T: disappearance of away-side correlations, but d+Au and p+p correlations are similar -> jet suppression is a final state effect
- lowering p_T threshold: resurrects correlated yield at away side
 - near/away-side yields are enhanced and away-side peak modified relative to p+p/d+Au

Run 4 : Jet-like correlations at high-p_T

Central Au+Au collisions at 200 GeV from Run 4 (more statistics):

- near side yield: no suppression
- away-side yield is suppressed: $R_{AA} \sim I_{AA}$
- suppression without angular broadening or medium modification

seeing those partons that fragment in vacuum? HPHD 2011, France

Conical emission in A+A collisions?

$\Delta \phi - \Delta \phi$ correlations

Cartoons of 3-particle $\Delta \phi$ correlations (1 trigger + 2 associated particles)

$\Delta \phi - \Delta \phi$ correlations

Subtraction of $v_2v_2v_4$ terms using $v_2 = 0.06$

Subtraction of $v_2v_2v_4$ term using $v_2 = 0.12$

Note: large and complicated backgrounds!

Jet+flow background method:

STAR, PRL102, 052302 (2009)

- model dependent
- evidence for conical emission

Cumulant method:

- model independent

C. Pruneau (STAR), J.Phys.G34 (667), 2007;

C. Pruneau, PRC 74 (2006) 064910

- strength and shape of away-side structures depend on magnitude of v_2 and v_4 coefficients
- improved analysis with rotated EP shows conical structures
- Momentum conservation effects estimated to be small for p_T^{trig}~3-4 GeV/c

Jana Bielcikova (STAR)

A closer look at the near-side peak ...

Additional near-side correlation in pseudorapidity ($\Delta \eta$) observed in central Au+Au collisions at RHIC!

- this structure is not present in p+p or d+Au collisions

Jet-medium interaction?

parton recombination, momentum kick, gluon radiation+longitudinal flow ... Initial state fluctuations and hydrodynamic flow? glasma flux tubes, participant fluctuations (triangular flow) ...

See talk by C. Y. Wong on ridge models HPHD 2011, France 11

What is the near-side ridge?

- persists to p_T trigger ~ 7 GeV/c
 → higher statistics needed to confirm this observation
- increases with N_{part} BUT
- ridge/jet ratio consistent between 200 and 62 GeV data <u>Medium modified jet?</u>
 Jana Bielcikova (STAR)

0.4 E 62 200 0.35 Cu+Cu 0.3 Au+Au ອີອິ0.25 0.15 0.1 0.05 0 10² 10 <N_{part}> **AR** Preliminary 62 200 200 $3.0 < p_T^{\text{trigger}} 6.0 \text{ GeV/c};$ Cu+Cu $1.5 < p_T^{\text{assoc}} < p_T^{\text{trigger}}$ Ridge[/]Y_{Jet} Au+Au 0.5 10^{2} 10 <N_{part}> Nattrass (STAR), Eur.Phys.J.C62:265-269,2009

AR Preliminary

Ridge properties: bulk-like

13

Ridge at forward rapidity at RHIC

Long-range near-side angular correlations in p+p collisions @ 7 TeV

Intermediate $p_T=1-3$ GeV/c

(d) N>110, 1.0GeV/c<p_<3.0GeV/c

Large multiplicity p+p collisions at 7 TeV: pronounced long-range pseudorapidity structure at small $\Delta \phi$ and at intermediate p_T observed by CMS.

Is the ridge a multiplicity/density effect?

STAR: Cu+Cu @ 200 GeV, multiplicity~N_{ch}(CMS_{p+p}@7TeV)

J. Putschke et al, (STAR), Hard Probes, 2010

The near-side peak in Cu+Cu collisions at RHIC with similar multiplicity as measured by CMS in p+p collisions at 7 TeV is mainly dominated by elliptic flow.

Leading PID triggered di-hadron correlations

PID triggered correlations: $\Delta\eta$ **projection**

jet-like yield: larger for π triggers than for p+K triggers in both d+Au and Au+Au.

ridge yield: smaller for π triggers than p+K triggers.

Can we explain the near-side ridge and away-side conical structure by one physics scenario?

Triangular flow V_3

• Fourier decomposition of particle distribution relative to reaction plane:

$$\frac{\mathrm{dN}}{\mathrm{d}(\varphi - \Psi_{\mathrm{R}})} = \mathrm{A}\left[1 + \sum_{\mathrm{n}} 2\mathrm{v}_{\mathrm{n}} \cos(\mathrm{n}(\varphi - \Psi_{\mathrm{R}}))\right]$$

- symmetric system: odd v_n coefficients = 0
- initial state fluctuations, hotspots ...
 → odd v_n coefficients are ≠ 0!

Mishra, Mohapatra, Saumia, Srivastava, PRC77, 064902 (2008) Sorensen, WWND, arXiv:0808.0503 (2008); J. Phys. G37: 094011, 2010 Alver, Roland, PRC 81, 054905 (2010) Takahashi et al., PRL 103 , 242301 (2009) Petersen, Qin, Bass, Mueller, PRC 82, 041901(R) (2010) Alver, Gombeaud,Luzum, Ollitrault, PRC 82, 034913 (2010) Kowalski, Lappi and Venugopalan, Phys.Rev.Lett. 100, 022303 (2010) Holopainen, Niemi, Eskola, PRC83, 034901 (2011) Schenke, Jeon, Gale, PRL 106, 042301 (2011) Qiu, Heinz, arXiv:1104.0650

... and many others ...

$v_2 vs v_3$ in Au+Au collisions

PHENIX, arXiv:1105.3928, S. Esumi , R. Lacey (PHENIX) QM2011

Weak centrality dependence of v_3 observed \rightarrow points toward fluctuations origin of v_3 .

Jana Bielcikova (STAR)

Centrality dependence of v_2 and v_3

Jana Bielcikova (STAR)

Evidence for v₃ from correlations

 v_3 is largest at intermediate p_T and for central collisions where the overlap geometry is most symmetric.

0-1% centrality: n=3 double hump is present on the away-side without v_2 subtraction.

Correlations with identified particles

K. Kauder (STAR) QM2011

S. Esumi (PHENIX) QM2011

- double-hump away-side structure for non-pion triggers at large $\Delta\eta$ (no bkg. subtraction)
- need PID measurements of v_3 at intermediate p_T

Di-hadron correlations: central - forward η

v₃ and the conical structure

We need precision measurements to see what is left for "jet-medium" modification.Jana Bielcikova (STAR)HPHD 2011, France

Di-hadron correlations relative to event plane

Probing the initial conditions ...

Low-x and Color Glass Condensate

low-x = large gluon densities

 → recombination becomes important
 → necessary to include non-linear contributions to evolution

Color Glass Condensate (CGC)

- semi-classical effective field theory to compute low-x gluons in nuclei
- predicts suppression of awayside correlations at forward rapidity ('monojets')

Saturation: low-x, large √s, large y, large A

Mid-forward rapidity correlations at RHIC

• high pedestal in d+Au: multi-parton interactions? Strikman, Vogelsang, PRD 83, 034029 (2011)

 no significant broadening from p+p to d+Au observed

• no hints of away-side peak disappearance

Forward-forward rapidity correlations: p+p/d+Au

$$\sqrt{s_{_{NN}}}$$
 = 200 GeV, d+Au, p+p \rightarrow Cluster + π^0 ; 3.0 < $\eta_{_{clus}}$, $\eta_{_{\pi0}}$ < 3.8

Near-side correlations: p+p~d+Au

Away-side correlations: p_T and centrality dependent broadening and suppression observed in d+Au.

Jana Bielcikova (STAR)

Di-hadron suppression at low-x qualitatively consistent with CGC BUT: Does it prove CGC? What about shadowing, initial state energy loss, MPI?

Jana Bielcikova (STAR)

γ-hadron correlations

γ-hadron correlations

• a "golden probe" of parton energy loss in the medium

•precise measurement of the in-medium modification of fragmentation function

p+p, Au+Au collisions: statistical method

$$egin{array}{rcl} Y_{direct} &=& rac{R_{\gamma} Y_{incl} - Y_{decay}}{R_{\gamma} - 1} \ R_{\gamma} &=& rac{N_{incl}}{N_{decay}} \end{array}$$

p+p collisions: isolation cut

$$E_{cone} = \sum_{\text{tracks}} p_T + \sum_{\text{clusters}} E$$
$$E_{cone} < 10\% E_{\gamma}$$
$$R_{cone} = 0.3$$

γ-hadron correlations in p+p: cross-check of methods

Over a wide p_T range both methods agree well. A clear away-side peak observed.

HPHD 2011, France

PHENIX, PRD 82, 072001 (2010)

γ -hadron: fragmenation function (PHENIX)

$$\xi = -\ln\left(\frac{p_T^h}{p_T^{\gamma}}\right)$$

FF in Au+Au collisions:

measured down to high ξ ~3 (= low z: p_{T,h} =0.5-1GeV/c)
good agreement with MLLA

- \bullet strong suppression of I_{AA} observed
- $I_{AA}(\xi)$ consistent with a constant

 $<I_{AA}> = 0.598 \ 0.095$ $\chi^2/NDF=4.85/4$

Jana Bielcikova (STAR)

γ -hadron: fragmenation function, I_{AA} (STAR)

• $D(z_T)$: $\pi^0 - h > \gamma_{dir} - h$

This is expected as γ_{dir} carries the total scattered constituent momentum, while π^0 only its fraction

• I_{AA} : is z_T independent and similar for π^0 –h and γ_{dir} -h

Model comparison: Zhang (no fragm. photons), Qin (fragm. photons included), Renk-ASW:

describe data well

Renk-YaJEM:

- overpredicts data at small z
- lost energy redistributed through medium to very low p_T and large angles?

Jana Bielcikova (STAR)

Summary

- Strong modification of correlation patterns in central A+A collisions at RHIC observed and described in terms of "ridge" and "conical emission" in the past 7 years.
- Recent theoretical developments and data analysis indicate presence of higher Fourier flow components (triangular flow) which is consistent with initial density fluctuation models.
- Detailed studies of correlation functions are needed to quantify the magnitude of the remaining jet-medium modification.
- Suppression of away-side correlation at forward rapidity observed in d+Au collisions which is qualitatively consistent with CGC. Further studies needed to evaluate contribution of other effects.
- Ongoing and future studies at RHIC with large statistics and improved PID capabilities are coming: γ -jets, heavy quarks ...

Backup slides

3-particle $\Delta \eta x \Delta \eta$ correlations

1) Jet fragmentation

- In medium radiated gluons diffused in η
- In medium radiated gluons collimated by longitudinal flow
- Combination of jet fragmentation and diffused gluons

Uniform overall excess of associated particles observed at intermediate p_T

- more data needed
- studies at higher p_T^{assoc}
 and p_T^{trigger}

Note: Involves complicated background subtraction