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“QCD Medium” 

“QCD Vacuum”  

RAA > 1 (enhancement)  
RAA = 1 (no medium effect)  
RAA < 1 (suppression) 

~ 
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Tomographic access to medium properties via pQCD E-loss models 

RAA =
d 2NAA / dpTd!

TAA d 2" pp / dpTd!

TAA = Ncoll /! pp
inel
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Current State of Knowledge 
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• At SPS, no 
suppression  

• At RHIC, ~ x5  
suppression above a 
few GeV/c 

• Charged hadrons 
and neutral pion 
converging above ~8 
GeV/c 
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Current State of Knowledge 
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• At LHC, similar level 
of suppression  
above a few GeV/c 

 
• (c.f. ALICE 2.76 TeV 

measurement of 
charged particle RAA 
up to 20 GeV/c) 

 
• Abundant high pT 

charged particles 
beyond 20 GeV/c!  



Current State of Knowledge 
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• RAA is very sensitive 
to the details of the 
quenching 
parameters at high pT 

• CMS is capable of 
measuring single 
charged particle up 
to ~O(100) GeV/c  ? 
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CMS Detector 

Hadronic Forward Calorimeter (HF) 

Beam Scintillator Counters (BSC) 

Pixel and Silicon Strip Tracker 

ECAL + HCAL inside 3.8 T solenoid 

Muon Chambers 
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Nuclear Modification Factor 

pp  reference spectrum (using minimum bias and jet-triggers) 

PbPb spectra (using minimum-bias and jet-triggers) 

RAA =
d 2NAA / dpTd!

TAA d 2" pp / dpTd!
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Charged Particle Spectra in pp 

arXiv:1104.3547 

 = 0.9 TeV  = 7.0 TeV s s
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Reference pp Spectrum 

xT = 2pT/ s

Low pT (1-10 GeV/c) High pT (10-100 GeV/c) 

arXiv:1104.3547 

Andre Yoon (MIT)   HPHD 2011  



10 

xT scaling interpolation 3.3 Data versus x
T
-scaling

A robust pQCD prediction for hard processes A B → C X in hadronic collisions is the

power-law scaling of the inclusive invariant cross section,

E d3σ/d3p = F (x
T
)/p

n(x
T
,
√
s)

T = F ′(x
T
)/
√
s
n(x

T
,
√
s)
. (3.1)

In the original parton model the power-law fall-off of the spectrum is simply n = 4 since

the underlying 2 → 2 subprocess amplitude for point-like partons is scale invariant. In

QCD, small scaling violations appear due to the running of α
S
and the evolution of PDFs

and FFs. At midrapidity and at fixed p
T
= 10 GeV/c, the power-law exponent computed

at NLO accuracy increases slowly from n # 5 at small values of x
T

(x
T

= 10−2) up to

n # 6 at x
T
= 0.5, with a very small dependence on the specific hadron species [35].
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Figure 4: Compiled charged particle cross-sections measured in p-p̄ collisions at five different c.m.
energies from 0.2 TeV to 1.96 TeV plotted as a function of p

T
(left) and as a function of x

T
(right)

scaled with an effective common exponent of n = 5.5 (see text).

Except for the latest CDF data, the theoretical expectation, Eq. (3.1), is indeed well

fulfilled by the experimental charged particle spectra measured so far in p-p̄ collisions7 at

different centre-of-mass energies at the CERN Spp̄S (
√
s = 0.2, 0.5, 0.9 TeV) [13] and

Tevatron (
√
s = 0.63, 1.8, 1.96 TeV) [14,16] colliders. All the p

T
spectra feature power-law

behaviours above p
T

≈ 2 GeV/c (the higher the c.m. energy the smaller the exponent

of the fall-off, see Fig. 4 left). Following the expectation Eq. (3.1), in order to extract a

common n value from these different data sets, the measurements are plotted as a function

7A factor of 1/2 is applied hereafter to the CDF Run II spectrum as they measured (h+ + h−) instead

of the average 0.5× (h+ + h−) for all other measurements.
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• Small scaling violation due 

to running  and the 
evolution of PDFs and 
FFs. 

 
• NLO residual corrections 
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Reference pp Spectrum 
arXiv:1104.3547 

• Bin-to-bin interpolation 
(pT<10 GeV/c) and NLO 
based xT scaling up to 100 
GeV/c 

• Good agreement with 
PYTHIA8 (<10%) and 
NLO rescaled CMS 7 TeV 
measurement  

• Interpolation well 
constrained (7-13%) by 
measurements at different 
collision energies 
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Nuclear Modification Factor 

pp  reference spectrum (using minimum bias and jet-triggers) 

PbPb spectra (using minimum-bias and jet-triggers) 

RAA =
d 2NAA / dpTd!

TAA d 2" pp / dpTd!
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Event selections 
Minimum Bias Trigger: 

- HF or BSC firing in coincidence on both sides 

Jet Triggers: 

- Background subtracted uncorrected jet energies (35, 50 GeV) 

Event selection: 

- Beam halo veto 

- Primary vertex with at least 2 tracks 

- 3 towers (E>3 GeV) in each of HF±  

- Beam-scraping cleaning 

- Primary vertex |z|<15 cm 

Pb	

Pb	

Pb	

Pb	

Pb	

 Pb	
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Inclusion Of Jet Triggers  

Jet triggers are used to enhance the pT reach and to have low fake 

Jet energy distribution Charged particle distribution 
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Tracking Performance in CMS 

• Efficiency ~65% and  
fake < 3% up to 100 GeV/c 

• Momentum resolution 
below 5% (correction  

<3 %) up to 100 GeV/c 
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Systematic Uncertainties for Spectra 

1 Introduction

RAA(pT ) =
d2NAA

ch /dpTdη

�TAA� d2σN N
ch /dpTdη

(1)

Table 1: Summary of the contributions to the estimated systematic uncertainties on the PbPb
spectra and the nuclear modification factor RAA.

Source Uncertainty [%]

Reconstruction efficiency 3.0–4.5

Non-primary and fake tracks 2.5–4.0

Momentum resolution and binning 3.0

Normalization of jet-triggered spectra 0.0–4.0

Total for PbPb spectra 4.9–7.8

TAAdetermination 4.1–18

Interpolated pp reference spectrum 6.8–13

Total for RAA 9.3–24

Table 2: Summary of the contributions to the estimated systematic uncertainties on the PbPb
spectra and the nuclear modification factor RAA.

Source Uncertainty [%]

Reconstruction efficiency 3.0–4.5

Non-primary and fake tracks 2.5–4.0

Momentum resolution and binning 3.0

Normalization of jet-triggered spectra 0.0–4.0

Total for PbPb spectra 4.9–7.8

1
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Charged Particle Spectra in PbPb 
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Systematic Uncertainties for RAA 

Table 3: Summary of the contributions to the estimated systematic uncertainties on the PbPb
spectra and the nuclear modification factor RAA.

Source Uncertainty [%]

Total for PbPb spectra 4.9–7.8

TAAdetermination 4.1–18

Interpolated pp reference spectrum 6.8–13

Total for RAA 9.3–24

2
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RAA(pT) for different centralities 
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RCP(pT) for Different Centralities 
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RAA over two decades in pT ! 
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RAA over two decades in pT ! 
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“Monday Crisis” 
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Comparison to ALICE RAA 
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Summary and Conclusions 

• With the pp reference spectrum constructed based on the 
CMS measurements, RAA is measured up to 100 GeV/c. 

•  Unambiguous suppression of charged particles above a few 
GeV/c and a continued rise of RAA up to 0.5 (0-5%) are 
observed. 

•  Put strong constraints on parton energy-loss models and 
allow an access to medium properties (dNg/dy and   ) by 
comparison to pQCD predictions. 
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Table 1: Summary of the contributions to the estimated systematic uncertainties on the PbPb
spectra and the nuclear modification factor RAA.

Source Uncertainty [%]

Reconstruction efficiency 3.0–4.5

Non-primary and fake tracks 2.5–4.0

Momentum resolution and binning 3.0

Normalization of jet-triggered spectra 0.0–4.0

Total for PbPb spectra 4.9–7.8
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Momentum resolution and binning 3.0
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Backup Slides 
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Collision Centrality 
Pb	

Pb	

Pb	

Pb	

Pb	

 Pb	



Events are classified according to the percentile of the Pb+Pb 
inelastic cross section based on total deposited HF energy  
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Collision Centrality 

•  Uncertainty on Ncoll value driven by two terms: 

-  Trigger and event selection efficiency 

-  Glauber parameters 
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Tracking efficiency in pp 

2 
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2010 Heavy Ion Run at LHC 
2010 has been a successful year at LHC 

After delivering 40 pb-1 of pp data, LHC delivered over 9 µb-1 of PbPb data 
~ 7 µb-1 used in this analysis  
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Inclusion Of Jet Triggers  

Jet triggers are used to enhance the pT reach and to have low fake 

Jet energy distribution Charged particle distribution 
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RAA (0-5%) 

 
• Statistically not 

significant to tell if it’s 
rising or flattening 

• 0.00063 ± 0.0014 
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Reference comparison 


