Centrality and p_T dependence of charged particle R_{AA} in *PbPb* collisions at $\sqrt{s_{NN}} = 2.76$ TeV

for the CMS Collaboration

High- p_T Probes of High-Density QCD at the LHC, 30 May-1 Jun 20110

Nuclear Modification Factor

Tomographic access to medium properties via pQCD E-loss models

Current State of Knowledge

- At SPS, no suppression
- At RHIC, ~ x5 suppression above a few GeV/c
- Charged hadrons and neutral pion converging above ~8 GeV/c

Current State of Knowledge

- At LHC, similar level of suppression above a few GeV/c
- (c.f. ALICE 2.76 TeV measurement of charged particle R_{AA} up to 20 GeV/c)
- Abundant high p_T charged particles beyond 20 GeV/c!

Current State of Knowledge

- *R_{AA}* is very sensitive to the details of the quenching parameters at high p_T
- CMS is capable of measuring single charged particle up to ~O(100) GeV/c

CMS Detector

Nuclear Modification Factor

PbPb spectra (using minimum-bias and jet-triggers)

$$R_{AA} = \frac{d^2 N_{AA} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta}$$

pp reference spectrum (using minimum bias and jet-triggers)

Charged Particle Spectra in pp

Andre Yoon (MIT) HPHD 2011

8

Reference pp Spectrum

x_T scaling interpolation

$$E d^{3}\sigma/d^{3}p = F(x_{T})/p_{T}^{n(x_{T},\sqrt{s})} = F'(x_{T})/\sqrt{s}^{n(x_{T},\sqrt{s})}$$

- Small scaling violation due to running and the evolution of PDFs and FFs.
- NLO residual corrections

arXiv:1104.3547

Reference pp Spectrum

arXiv:1104.3547

- Bin-to-bin interpolation (p_T<10 GeV/c) and NLO based x_T scaling up to 100 GeV/c
- Good agreement with PYTHIA8 (<10%) and NLO rescaled CMS 7 TeV measurement
- Interpolation well constrained (7-13%) by measurements at different collision energies

Nuclear Modification Factor

PbPb spectra (using minimum-bias and jet-triggers)

$$R_{AA} = \frac{d^2 N_{AA} / dp_T d\eta}{\langle T_{AA} \rangle d^2 \sigma_{pp} / dp_T d\eta}$$

pp reference spectrum (using minimum bias and jet-triggers)

Event selections

Minimum Bias Trigger:

- HF or BSC firing in coincidence on both sides

Jet Triggers:

- Background subtracted uncorrected jet energies (35, 50 GeV)

Event selection:

- Beam halo veto
- Primary vertex with at least 2 tracks
- 3 towers (E>3 GeV) in each of HF±
- Beam-scraping cleaning
- Primary vertex |z|<15 cm

Inclusion Of Jet Triggers

Jet triggers are used to enhance the p_T reach and to have low fake

Tracking Performance in CMS

- Efficiency ~65% and fake < 3% up to 100 GeV/c
- Momentum resolution below 5% (correction
 <3 %) up to 100 GeV/c

Systematic Uncertainties for Spectra

Source	Uncertainty [%]
Reconstruction efficiency	3.0 - 4.5
Non-primary and fake tracks	2.5 - 4.0
Momentum resolution and binning	3.0
Normalization of jet-triggered spectra	0.0 - 4.0
Total for PbPb spectra	4.9 - 7.8

Charged Particle Spectra in *PbPb*

Systematic Uncertainties for R_{AA}

Source	Uncertainty [%]
Total for PbPb spectra	4.9 - 7.8
$T_{\rm AA}$ determination	4.1 - 18
Interpolated pp reference spectrum	6.8 - 13
Total for $R_{\rm AA}$	9.3–24

$R_{AA}(p_T)$ for different centralities

$R_{CP}(p_T)$ for Different Centralities

R_{AA} over two decades in p_T !

R_{AA} over two decades in p_T !

"Monday Crisis"

Comparison to ALICE R_{AA}

Summary and Conclusions

- With the pp reference spectrum constructed based on the CMS measurements, R_{AA} is measured up to 100 GeV/c.
- Unambiguous suppression of charged particles above a few GeV/c and a continued rise of R_{AA} up to 0.5 (0-5%) are observed.
- Put strong constraints on parton energy-loss models and allow an access to medium properties (dN_g/dy and *q̂*) by comparison to pQCD predictions.

Backup Slides

Collision Centrality

Events are classified according to the percentile of the Pb+Pb inelastic cross section based on total deposited HF energy

Collision Centrality

Centrality Bin	$\langle N_{\rm part} \rangle$	r.m.s.	$\langle N_{\rm coll} \rangle$	r.m.s.	$\langle T_{\mathrm{AA}} angle$ (mb $^{-1}$)	r.m.s.
0 - 5%	381 ± 2	19.2	1660 ± 130	166	25.9 ± 1.06	2.60
5 - 10%	329 ± 3	22.5	1310 ± 110	168	20.5 ± 0.94	2.62
10 - 30%	224 ± 4	45.9	745 ± 67	240	11.6 ± 0.67	3.75
30 - 50%	108 ± 4	27.1	251 ± 28	101	3.92 ± 0.37	1.58
50 - 70%	42.0 ± 3.5	14.4	62.8 ± 9.4	33.4	0.98 ± 0.14	0.52
70 - 90%	11.4 ± 1.5	5.73	10.8 ± 2.0	7.29	0.17 ± 0.03	0.11

- Uncertainty on N_{coll} value driven by two terms:
- Trigger and event selection efficiency
- Glauber parameters

Tracking efficiency in pp

arXiv:1104.3547

2010 Heavy Ion Run at LHC

2010 has been a successful year at LHC

After delivering 40 pb-1 of pp data, LHC delivered over 9 μ b⁻¹ of PbPb data ~ 7 μ b⁻¹ used in this analysis

Inclusion Of Jet Triggers

Jet triggers are used to enhance the p_T reach and to have low fake

R_{AA} (0-5%)

Reference comparison

Harald Appelshäuser, Quark Matter 2011,

