Jets in Heavy lons with ATLAS

Will Brooks USM, Valparaíso, Chile For the ATLAS Collaboration

ATLAS-CONF-2011-075

Jets in Heavy lons with ATLAS

Will Brooks

hphd2011

• The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:

ATLAS-CONF-2011-075

Jets in Heavy Ions with ATLAS

Will Brooks

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets

ATLAS-CONF-2011-075

Will Brooks

Jets in Heavy Ions with ATLAS

hphd2011

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks

ATLAS-CONF-2011-075

Jets in Heavy Ions with ATLAS

Will Brooks

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes

ATLAS-CONF-2011-075

Will Brooks

Jets in Heavy Ions with ATLAS

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes
- The first indications of jet quenching were seen in the 2010 ATLAS PRL on di-jet asymmetry (Phys. Rev. Lett. 105, 252303 (2010))

ATLAS-CONF-2011-075

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes
- The first indications of jet quenching were seen in the 2010 ATLAS PRL on di-jet asymmetry (Phys. Rev. Lett. 105, 252303 (2010))
- Now: more detailed studies of inclusive jet properties:

ATLAS-CONF-2011-075

Will Brooks

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes
- The first indications of jet quenching were seen in the 2010 ATLAS PRL on di-jet asymmetry (Phys. Rev. Lett. 105, 252303 (2010))
- Now: more detailed studies of inclusive jet properties:
 - radial profile

Will Brooks

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes
- The first indications of jet quenching were seen in the 2010 ATLAS PRL on di-jet asymmetry (Phys. Rev. Lett. 105, 252303 (2010))
- Now: more detailed studies of inclusive jet properties:
 - radial profile
 - fragmentation functions

ATLAS-CONF-2011-075

Will Brooks

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes
- The first indications of jet quenching were seen in the 2010 ATLAS PRL on di-jet asymmetry (Phys. Rev. Lett. 105, 252303 (2010))
- Now: more detailed studies of inclusive jet properties:
 - radial profile
 - fragmentation functions
 - internal distribution of momenta

ATLAS-CONF-2011-075

Will Brooks

- The advent of the LHC HI collisions brings much that is new for the study of hard probes in high-density systems:
 - high energy jets
 - plentiful energetic heavy quarks
 - heavy boson probes
- The first indications of jet quenching were seen in the 2010 ATLAS PRL on di-jet asymmetry (Phys. Rev. Lett. 105, 252303 (2010))
- Now: more detailed studies of inclusive jet properties:
 - radial profile
 - fragmentation functions
 - internal distribution of momenta
- What we have found is surprising, intriguing, unexpected

ATLAS-CONF-2011-075

Will Brooks

Theoretical expectations prior to LHC HI data: modified jet shape

Vitev, Wicks, Zhang, JHEP 0811 (2008) 093

Substantially expanded jet cone with diffuse edge

Jet suppression depends critically on cone size

Salgado and Wiedemann, Phys. Rev. Lett. 93 (2004) 042301

Broadened distribution of transverse momentum within jet

(however, note Zapp et al., arXiv:0805.4759v2 [hep-ph])

Jets in Heavy Ions with ATLAS

hphd2011

Monday, May 30, 2011

Will Brooks

Theoretical expectation modified jet frage

omponent to low z

n of higher-z component, r $\hat{q}=10~GeV^2/fm$

with ATLAS

ATLAS Instrumentation

ATLAS Instrumentation

Detector component	Required resolution	η coverage		
		Measurement	Trigger	
Tracking	$\sigma_{p_T}/p_T = 0.05\% p_T \oplus 1\%$	± 2.5		
EM calorimetry	$\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$	± 3.2	±2.5	
Hadronic calorimetry (jets)				
barrel and end-cap	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$	± 3.2	±3.2	
forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$	
Muon spectrometer	$\sigma_{p_T}/p_T = 10\%$ at $p_T = 1$ TeV	±2.7	±2.4	

LAr hadronic end-cap and forward calorimeters

LAr electromagnetic calorimeters

on radiation tracker

Pixel detector

JINST 3 S08003 (2008) :ker

Pb+Pb data in ATLAS

Will Brooks

Jets in Heavy Ions with ATLAS

hphd2011

 $\mathbf{E}_{\mathbf{60}} = \mathbf{E}_{\mathrm{T}} \left[\mathbf{GeV} \right]$

2

Heavy Ion Collision Event with 2 Jets

Will Brooks

Jets in Heavy lons with ATLAS

hphd2011

-2 _3-5-4-3-2-10 1 2 3 4 5

Calorimeter

Towers

Ph+Ph data in ATLAS

Trigger:

- minimum bias scintillators, both sides firing within 3 ns
- zero degree calorimeter coincidence
- Using good runs with solenoid field on, have 47 million events

Will Brooks

Jets in Heavy lons with ATLAS

hphd2011

Jet reconstruction

- Used anti-k_T clustering algorithm (Cacciari, M., Salam, G. P. and Soyez, G., The anti-kt jet clustering algorithm, Journal of High Energy Physics, 2008, 063)
 - cone-like but infrared and collinear safe
- Perform anti- $k_{\rm T}$ reconstruction prior to any background subtraction
- R = 0.4 and R = 0.2
- Input: $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ towers
- Underlying event estimated and subtracted for each longitudinal layer and for 100 slices of $\Delta \eta = 0.1$

 $E_{T_{sub}}^{cell} = E_T^{cell} - \rho^{layer}(\eta) \cdot A^{cell}$

• ρ is energy density estimated event-by-event, from average over $0 < \phi < 2\pi$

Will Brooks

Jet reconstruction bias

- Avoid biasing ρ due to jets two methods:
 - Sliding window exclusion
 - Exclude cells in jets satisfying:

- For R = 0.4, add an iteration step to ensure jets with $E_T > 50$ GeV are always excluded from ρ
- Correct for underlying event v2

• Jets measured $|\eta| < 2.8$, no interference: $|\eta_{FCAL}| > 3.1$

- Correlation between ΣE_T of FCAL and other calorimeters
- Centrality translated into $\langle N_{coll} \rangle$ via Glauber model

Ann.Rev.Nucl.Part.Sci.57:205-243,2007, <u>http://arxiv.org/abs/0805.4411</u>

Will Brooks

asurement using FCAL

- Jets measured $|\eta| < 2.8$, no interference: $|\eta_{FCAL}| > 3.1$
- Correlation between ΣE_T of FCAL and other calorimeters
- Centrality translated into $\langle N_{coll} \rangle$ via Glauber model

Ann.Rev.Nucl.Part.Sci.57:205-243,2007, http://arxiv.org/abs/0805.4411

entrality

Will Brooks

Fluctuations in ΣE_T , Data and MC

 Agreement in fluctuations between MC and data at the 10% level

Will Brooks

Jet Energy Resolution

- Jet energy resolution for R=0.4 and R=0.2 jets for 7 centrality bins
- Typical range is 10-15%; mild centrality dependence

Will Brooks

Single jet spectrum, R=0.4

- Jet spectrum per event, R=0.4 jets, unnormalized (left) and normalized to N_{coll} (right), for various centralities
- Additional scale uncertainty of 22% due to global JES

Will Brooks

Single jet spectrum, R=0.2

- Jet spectrum per event, R=0.2 jets, unnormalized (left) and normalized to N_{coll} (right), for various centralities
- Additional scale uncertainty of 22% due to global JES

Will Brooks

Centrality Dependence for 3 Jet Energies

- Normalized to N_{coll} and N_{event}, three different energy ranges
- Slow, monotonic dependence on centrality
- Systematic uncertainties: centrality dependence of jet energy resolution, and jet energy scale and N_{coll} uncertainties

Will Brooks

Jets in Heavy Ions with ATLAS

Single jet central to peripheral ratio: R_{cp}

Use 60-80% centrality as peripheral reference for Rcp

$$R_{cp} \equiv \frac{\frac{1}{N_{coll}^{centrality}} \frac{1}{N_{evt}^{centrality}} \frac{dN_{jet}^{centrality}}{dE_{T}}}{\frac{1}{N_{coll}^{60-80}} \frac{1}{N_{evt}^{60-80}} \frac{dN_{jet}^{60-80}}{dE_{T}}}{\frac{1}{N_{coll}^{60-80}} \frac{1}{N_{evt}^{60-80}} \frac{dN_{jet}^{60-80}}{dE_{T}}}{dE_{T}}}$$

Will Brooks

Jets in Heavy lons with ATLAS

R_{CP} vs. E_T and Centrality, R=0.4 Jets

- Limited E_T dependence
- Monotonic centrality dependence, suppression ~factor 2

Will Brooks

Jets in Heavy lons with ATLAS

R_{CP} vs. E_T and Centrality, R=0.2 Jets

- Limited ET dependence
- Monotonic centrality dependence, up to 50% suppression

Will Brooks

Jets in Heavy lons with ATLAS

Transverse Momentum within Jet

$$j_T \equiv p_T^{had} sin\Delta R = p_T^{had} sin(\sqrt{\Delta\eta^2 + \Delta\phi^2})$$

- Not yet unfolded for angular resolution
- Little systematic dependence seen on centrality
- Little difference between R=0.4 and R=0.2 jets

Will Brooks

Jets in Heavy lons with ATLAS

Fragmentation Function Dependencies

Fragmentation Function Ratios, R=0.4 Jets

- Visible small effect for 0-10% and 10-20% centralities
- Suppression concentrated at high z is not evident

Will Brooks

Jets in Heavy lons with ATLAS

Fragmentation Function Ratios, R=0.2 Jets

Even smaller effect than in R=0.4 jets

Suppression concentrated at high z is not evident

Will Brooks

Jets in Heavy lons with ATLAS

Update on di-jet asymmetry

$$A_J \equiv \frac{E_T^{jet1} - E_T^{jet2}}{E_T^{jet1} + E_T^{jet2}}$$

- R = 0.4, E_T(jet I) > 100 GeV, E_T(jet 2) > 25 GeV
- Correction for flow in underlying event
- Iterative step in background estimation
- Integrated luminosity 7 μb⁻¹ (PRL had 1.7 μb⁻¹)

Will Brooks

Di-Jet Asymmetry, R=0.4 Jets

• Updated from ATLAS 2010 Phys. Rev. Lett. with full luminosity

Will Brooks

Di-Jet Asymmetry, R=0.2 Jets

Updated from ATLAS 2010 Phys. Rev. Lett. with full luminosity

Will Brooks

Di-Jet Angular Distribution, R=0.4 Jets

• Limited angular broadening of the di-jet pair

Will Brooks

Jets in Heavy Ions with ATLAS

Di-Jet Angular Distribution, R=0.4 Jets

Log scale version of previous plot
Limited angular broadening of the di-jet pair

Di-Jet Angular Distribution, R=0.2 Jets

 Even less angular broadening of the di-jet pair than for R=0.4 jets

Will Brooks

Di-Jet Angular Distribution, R=0.2 Jets

Log scale version of previous plot

Will Brooks

Conclusions

- We observe a factor of ~ 2 suppression in jet yield at high E_T in central collisions
 - Gradual turn-on of suppression with centrality
 - R = 0.2 and R = 0.4 results quantitatively similar
 - No significant E_T dependence of suppression
- No significant broadening of fragment j_{T} distribution
- Weak modification of fragment z distributions
- Di-jet asymmetry analysis improved (background, flow correction), still see strong modification and no $\Delta\varphi$ broadening

BACKUP SLIDES

Will Brooks

Jets in Heavy lons with ATLAS

hphd2011

]	Barrel	End-cap					
		EM calorimeter						
Number of layers and $ \eta $ coverage								
Presampler	1	$ \eta < 1.52$	1	$1.5 < \eta < 1.8$				
Calorimeter	3	$ \eta < 1.35$	2	$1.375 < \eta < 1.5$				
	2	$1.35 < \eta < 1.475$	3	$1.5 < \eta < 2.5$				
			2	$2.5 < \eta < 3.2$				
Granularity $\Delta \eta \times \Delta \phi$ versus $ \eta $								
Presampler	0.025×0.1	$ \eta < 1.52$	0.025×0.1	$1.5 < \eta < 1.8$				
Calorimeter 1st layer	$0.025/8 \times 0.1$	$ \eta < 1.40$	0.050×0.1	$1.375 < \eta < 1.425$				
	0.025×0.025	$1.40 < \eta < 1.475$	0.025×0.1	$1.425 < \eta < 1.5$				
			$0.025/8 \times 0.1$	$1.5 < \eta < 1.8$				
			$0.025/6 \times 0.1$	$1.8 < \eta < 2.0$				
			$0.025/4 \times 0.1$	$2.0 < \eta < 2.4$				
			0.025×0.1	$2.4 < \eta < 2.5$				
			0.1×0.1	$2.5 < \eta < 3.2$				
Calorimeter 2nd layer	0.025×0.025	$ \eta < 1.40$	0.050×0.025	$1.375 < \eta < 1.425$				
	0.075×0.025	$1.40 < \eta < 1.475$	0.025×0.025	$1.425 < \eta < 2.5$				
			0.1×0.1	$2.5 < \eta < 3.2$				
Calorimeter 3rd layer	0.050 imes 0.025	$ \eta < 1.35$	0.050×0.025	$1.5 < \eta < 2.5$				
		Number of readout cha	annels					
Presampler	7808		1536 (both sides)					
Calorimeter	101760		62208 (both sides)					
		LAr hadronic end-	cap					
$ \eta $ coverage			$1.5 < \eta < 3.2$					
Number of layers			4					
Granularity $\Delta \eta \times \Delta \phi$			0.1×0.1	$1.5 < \eta < 2.5$				
			0.2 imes 0.2	$2.5 < \eta < 3.2$				
Readout channels			5632 (both sides)					
		LAr forward calorin	neter					
$ \eta $ coverage			$3.1 < \eta < 4.9$					
Number of layers			3					
Granularity $\Delta x \times \Delta y$ (cm)			FCal1: 3.0 × 2.6	$3.15 < \eta < 4.30$				
			FCal1: \sim four times finer	$3.10 < \eta < 3.15,$				
				$4.30 < \eta < 4.83$				
			FCal2: 3.3 × 4.2	$3.24 < \eta < 4.50$				
			FCal2: \sim four times finer	$3.20 < \eta < 3.24,$				
				$4.50 < \eta < 4.81$				
			FCal3: 5.4 × 4.7	$3.32 < \eta < 4.60$				
			FCal3: \sim four times finer	$3.29 < \eta < 3.32,$				
				$4.60 < \eta < 4.75$				
Readout channels			3524 (both sides)					
		Scintillator tile calori	meter					
	Barrel		Extended barrel					
$ \eta $ coverage	$ \eta < 1.0$		$0.8 < \eta < 1.7$					
Number of layers	3		3					
Granularity $\Delta \eta \times \Delta \phi$	0.1×0.1		0.1×0.1					
Last layer	0.2×0.1		0.2×0.1					
Readout channels	5760		4092 (both sides)					

 Table 3. Main parameters of the calorimeter system.

Jet Calibration

Several Jet Calibration Schemes in ATLAS:

- Simple pT- and η-dependent calibration scheme (EM+JES)
- Global Sequential calibration scheme (GS)
- Global Cell-energy-density Weighting calibration scheme (GCW)
- Local Cluster Weighting calibration scheme (LCW)
- We are using GCW because we want to calibrate the entire detector including the hadronic response before doing the subtraction.

Will Brooks

Will Brooks

1

arXiv:1011.6182

Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the ATLAS Detector at the LHC

G. Aad *et al.* (The ATLAS Collaboration) *

Using the ATLAS detector, observations have been made of a centrality-dependent dijet asymmetry in the collisions of lead ions at the Large Hadron Collider. In a sample of lead-lead events with a per-nucleon center of mass energy of 2.76 TeV, selected with a minimum bias trigger, jets are reconstructed in fine-grained, longitudinally-segmented electromagnetic and hadronic calorimeters. The underlying event is measured and subtracted event-by-event, giving estimates of jet transverse energy above the ambient background. The transverse energies of dijets in opposite hemispheres is observed to become systematically more unbalanced with increasing event centrality leading to a large number of events which contain highly asymmetric dijets. This is the first observation of an enhancement of events with such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

• Paper submitted on Nov 25, accepted by PRL

From 2010 PRL

Phys. Rev. Lett. 105, 252303 (2010))

Centrality bin	0-10%	10-20%	20-30%	30-40%	40-50%	50-60%
$N_{\rm coll}^{\rm cent}/N_{\rm coll}^{60-80\%}$	56.7	34.9	21.1	12.2	6.5	3.2
Relative error (%)	11.4	10.5	11.3	7.9	6.1	3.8

Ratios vs. p_T, R=0.4 Jets

Visible effect for 0-10% and 10-20% centralities

Will Brooks

Ratios vs. p_T, R=0.2 Jets

• Little visible effect at any centrality

Will Brooks

E_{T1} dependence, Di-Jet Asymmetry, R=0.4 Jets

E_{T1} dependence, Di-Jet Asymmetry, R=0.2 Jets

Will Brooks

Di-Jet Asymmetry, E_{T1} =75 GeV, R=0.2 Jets

Will Brooks