# Jet Measurements in PbPb Collisions with the CMS Detector

#### Marguerite Belt Tonjes for the CMS Collaboration







#### Compact Muon Solenoid (CMS)





HPHD, Palaiseau, May 30 2011



### Jet Finding in Heavy Ion Events

 Jet: localized collection of hadrons that come from a fragmented parton







## Jet Finding in Heavy Ion Events

- Jet: localized collection of hadrons that come from a fragmented parton
- Problem: finding jet above significant soft background
  - $dN_{charged}/d\eta \sim 1600$  for 5% most central events
- Approach: use pileup  $\bullet$ subtraction technique<sup>[\*]</sup> to remove background underlying event



[\*] O. Kodolova, et. al., Eur. Phys. J. C50 (2007) 117





## CMS Jet Finding

- CMS has non-linear calorimeter response in p<sub>T</sub> and η, need jet energy corrections (which are well understood in pp)
  - iterative cone 0.5: use corrections derived in pp (and checked with pp data, including dijet asymmetry)
  - anti-k<sub>T</sub> cone 0.3 with particle flow, heavy ion tracking: derive corrections using PYTHIA pp simulations ONLY
- Remove soft background (next slide)
- Particle Flow !=anisotropy, but is instead a method to utilize all subdetectors to the finest granularity: based on reconstructing all stable particles in the event to create higher level objects (jets)





#### Iterative Pileup Subtraction (Event by Event)



Marguerite Tonjes (UMD)

HPHD, Palaiseau, May 30 2011

### **Background Studies**

- Study PYTHIA embedded into MinBias PbPb data
- Study PYTHIA embedded in HYDJET
  - See same jet finding resolution for both
- Study background fluctuations with MC and data
  - Agree closely, differences included in systematic
- Extra background distributed from quenching added to systematic
- Background subtraction method used removes most low p<sub>T</sub> content before it can contribute to jet
  - Soft fluctuations in background contribute little
  - High  $p_T$  fluctuations understood in jet resolution studies





### Jet Efficiency and Dijet "Mismatch" Rate



Marguerite Tonjes (UMD) HPHD, Palaiseau, May 30 2011

### Inclusive Jet Performance in PbPb

Resolution:  $\sigma$  of (reconstructed jet  $p_T$ )/(generator level jet  $p_T$ ) for matched jets in  $\Delta R$ Response: Mean of (reconstructed jet  $p_T$ )/(generator level jet  $p_T$ ) for matched jets in position  $\Delta R$ 







### Finding Dijets in PbPb Collisions

- Trigger on jet collisions (35U or 50U)
  - iterative cone 0.5 with iterative pileup subtraction in trigger
  - U means energy before  $p_T$ ,  $\eta$  corrections applied
- Make sure they are minimum bias events
  - Also remove uncharacteristic detector signal events
- Select dijets with choices based on performance of jet finder in simulations, and trigger efficiency
  - anti- $k_T$  particle flow, iterative pileup subtraction
    - leading  $p_T$ >100 GeV/c, subleading  $p_T$ >40 GeV/c
  - iterative cone 0.5 calorimeter jet, iterative pileup subtraction
    - leading  $p_T$ >120 GeV/c, subleading  $p_T$ >50 GeV/c
  - and  $|\eta| < 2$ ;  $\Delta \phi_{1,2} > 2\pi/3$



#### Finding Dijets in PbPb Collisions II

• Check some fraction by eye in event display







#### Checking for Modification by PbPb





#### Dijet p<sub>T</sub> Asymmetry



energy imbalance in reconstructed dijets



#### **Dijet "Balanced" Fraction**



#### ATLAS vs CMS Dijet selection





- With the higher jet thresholds used for the CMS paper we are less sensitive to background fluctuations
  - ATLAS 100/20, CMS: 120/50 for leading/sub-leading

#### Slide added from backup per morning's discussion



# Where Does the Missing Jet Energy Go?

- A large dijet energy imbalance is seen in the calorimeters
- By using the track information, we have an opportunity to do the *first in-depth* studies of where the energy goes
- Look at sum of tracks near jet cone
- Investigate missing momentum using all charged particle tracks







#### **Jet-Track Correlations**





#### Asymmetry Dependence of Fragmentation





- Averaged over events
- Allows us to see which p<sub>T</sub> range carries the balance of the jet momentum
- Note this is a sum of differences, we are interested in the direction of excess (towar or away from leading jet)
  - Tracks could cancel out in some region
- No background subtraction needed











Radial Dependence of  $\phi_T = 0$ 



Radial Dependence of  $\langle p_T | | > 2^{n}$ 





Marguerite Tonjes (UMD) HPHD, Palaiseau, May 30 2011



#### Parton Fragmentation





Marguerite Tonjes (UMD)

# $\xi = ln(1/z)$





# $\xi = ln(1/z)$



Select particles with  $p_T > 4 \text{GeV/c}$  to eliminate

the underlying event contribution



Marguerite Tonjes (UMD)

HPHD, Palaiseau, May 30 2011



#### Particle Flow and Fragmentation

- Jet energy corrections are derived from inclusive jets in PYTHIA
- In real data response may differ due to:
  - Poor description of fragmentation
  - Different fraction of quark vs gluons
  - Possible jet quenching effects



#### Particle flow jets show reduced sensitivity to the fragmentation pattern





#### Fragmentation Functions in Data



#### pp 2.76 TeV Data from 2011

- Particle Flow Jet Reconstruction – Anti k<sub>⊤</sub>, R=0.3
  - Fully efficient for  $p_T > 40 \text{GeV/c}$
  - Good control of jet  $p_T$  scale
  - Applied in pp and PbPb
- **Dijet selection**  $- p_T^{Jet1} > 100 GeV/c$ 
  - p<sub>T</sub><sup>Jet2</sup>>40GeV/c
  - $\Delta \phi > 2\pi/3$
- Compare Leading and Subleading Jet





#### CMS-PAS-HIN-11-004





# Fragmentation Functions, pp & PbPb



pp as reference for PbPb: Smear pp to PbPb jet  $p_T$  resolution Reweight jet  $p_T$  spectrum to match PbPb CMS-PAS-HIN-11-004

Marguerite Tonjes (UMD) HPHD, Palaiseau, May 30 2011



### Fragmentation Functions, pp & PbPb



Reconstructed PbPb leading and subleading jets fragment like jets of corresponding energy from pp collisions



#### Select by Dijet Imbalance



HPHD, Palaiseau, May 30 2011

#### Note Different Jet p<sub>T</sub> Distributions



HPHD, Palaiseau, May 30 2011



# Neither jet interacted with medium: emitted at surface

- Both jets quenched in medium ~ similar path length
- Medium transparent to jets
  - Not the case, because we do observe quenching
- Asymmetric jets:

Symmetric jets:

- Jets had different path lengths, but both interacted with medium
- One jet on surface (no interaction), other went through the medium
- Something not yet considered... ?

# Dijet Possibilities






#### Fragmentation Function Lesson

- The hard part of the fragmentation function gives the same results for leading, subleading, symmetric, and balanced jets
- Any issues with surface bias or path length are not important for this measurement: the result is the same



Fragmentation pattern independent of energy lost in medium Consistent with partons fragmenting in vacuum





# Summary

- Angular correlation of partons not affected by the medium
  - Favors multiple soft interactions with medium
- Large dijet momentum imbalance observed
  Direct observation of parton energy loss
- Momentum difference in the dijet balanced by low  $p_{\mathsf{T}}$  particles at large angles relative to the away side jet
- Measurement of jet fragmentation functions in PbPb
  - Jets in pp and in PbPb show a similar pattern
    - High  $p_{\mathsf{T}}$  fragmentation pattern is independent of the energy lost in the medium
  - Consistent with partons fragmenting in vacuum





#### Stop to Reflect



Musée D'Orsay 2008, photo by M. Tonjes



HPHD, Palaiseau, May 30 2011



#### Fin



CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST PbPb  $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Run/Event: 151076 / 1328520 Lumi section: 249 Jet 0, pt: 205.1 GeV Jet 1, pt: 70.0 GeV



Marguerite Tonjes (UMD)

HPHD, Palaiseau, May 30 2011



#### **Calorimeter Imbalance Comparison**



Results are in good agreement with previous Calorimeter jet measurement



#### Dijet Imbalance ak3



Excess of unbalanced jets persists with PF, R=0.3 dijet selection

Marguerite Tonjes (UMD) HPHD, Palaiseau, May 30 2011



#### **Jet-Track Correlations**



Marguerite Tonjes (UMD)

HPHD, Palaiseau, May 30 2011



#### Jet-Track Background

- Background evaluated within R=0.8 cone symmetric about η
- Avoids φ dependent variations due to detector effects and event anisotropy
- Single jets required to be within  $0.8 < |\eta| < 1.6$ 
  - To contain 0.8 radius of tracks around jet axis







# Asymmetry Dependence of Fragmentation

#### Linear scale

Similar results found with anti-kt3, particle flow





HPHD, Palaiseau, May 30 2011

#### **Dijet Back-to-Back Fraction**





# Leading Jet p<sub>T</sub> dependence

0.5 CMS: arXiv:1102.1957

120

140

60

eadin



Fractional imbalance varies little with leading jet p⊤, even at highest leading jet p⊤

Marguerite Tonjes (UMD) HPHD, Palaiseau, May 30 2011

# Iterative Pileup Subtraction Algorithm

- 1. Make a tower of ECAL + HCAL energy
- 2. Find average tower  $\overline{E_T(\eta)}$  and  $\sigma_T(\eta)$  at each  $\eta$  ring in each event
  - Recalculate tower energy by subtracting mean energy and dispersion, dropping negative towers
- Find jets with iterative cone algorithm and corrected tower energy (E<sub>T</sub>> 10 GeV pe<u>de</u>stal cut)
- 4. Using original tower energy, calculate  $E_T$  and  $\sigma_T$  for those towers outside of the jets
  - Correct tower energy again, dropping negative towers
- 5. Find jets with iterative cone algorithm with current background subtracted energies





# Parton Energy Loss

(a) Fragmentation in vacuum

• Key ingredients of parton energy loss calculations:

Parton propagation in the nuclear medium Radiative- Collisional-energy loss Parton Showering (Fragmentation)

> (b) Medium-modified fragmentation

Projectile gluon

Target parton





- medium properties
- where and when the process happens
- Reconstructed dijets
  - full final state of hard scatterings
  - study the individual components contributing to the parton energy loss





## What is Particle Flow?

Hint: It's got nothing to do with hydrodynamics

Particle flow reconstructs all stable particle in the event:  $h^{+/-}$ ,  $\gamma$ ,  $h^0$ , e,  $\mu$ 

clusters and tracks

Particles



- On average jets are:
  - ~ 65% charged hadrons, ~ 25% photons, ~ 10 % neutral hadrons
- Using the silicon tracker (vs. HCAL) to measure charged hadrons
  - Improves resolution, avoids non-linearity
  - Decreases sensitivity to the fragmentation pattern of jets
- Used extensively in ALEPH, CMS and proposed for the ILC



#### **PYTHIA Momentum Balance**



#### Winter Workshop on Nuclear Dynamics, 2011





HPHD, Palaiseau, May 30 2011

Edward Wenger - Slide 22



# **Different Gaussian smearing**



Cacciari, Salam, Soyez: arXiv: 1101.2878





# PYTHIA+HYDJET



Cacciari, Salam, Soyez: arXiv: 1101.2878





# **PYTHIA + Fluctuations**



- Apply ATLAS's selection on the smeared jets:
  - $p_{T1} > 100 \text{ GeV}, p_{T2} > 25 \text{ GeV}, dphi > pi/2$
  - GenJet  $p_T > 0$  GeV
- Applying a gaussian smearing to PYTHIA we can reproduce the results of the Salam paper.



#### Ingredients



• Select only Jets above  $p_T = 3 \text{GeV}$ 



# Ingredients II



- Adding many low p<sub>T</sub> jets, smeared to higher p<sub>T</sub> than the true away side jet, compresses the A<sub>J</sub> distribution
  - Tested by adding the 0-3GeV jets in the analysis



# Ingredients III



- Balanced dijets + fluctuations can fake a wide A<sub>J</sub> distribution
  - Needs a very large number (~100) of low  $p_T$  jets per event
    - Remember:  $dn/d\eta^{ch} \sim 6$  in  $|eta| < 5 \rightarrow \sim 60$  charged particles/event
  - And a very large  $\sigma$  (20GeV) for the smearing
    - based on a Gaussian fit to the low  $\ensuremath{p_{T}}$  part of the ATLAS min bias jet spectrum
    - ATLAS reports  $\sigma$  ~8 GeV for their background fluctuations



# Hydjet



- The HYDJET A<sub>J</sub> distribution is created by the same mechanism
  - The hard part of a central HYDJET event consists of ~300 unquenched PYTHIA events with  $p_T$ hat of ~7GeV
  - Low  $p_{\mathsf{T}}$  jets smear the leading jets by superposition and cause a combinatorial problem



#### Is unquenched Hydjet a good background reference?



- PYTHIA embedded in real data, including all background fluctuations and resolution effects does not show a widened A<sub>J</sub> distribution
  - A cross check with p<sub>T</sub>hat = 30GeV embedded in a large min bias data sample gave an identical reference distributions
  - R<sub>AA</sub> shows a strong hadron suppression at 5-10GeV
  - Low  $p_T$  jets seem to be strongly suppressed



## ATLAS vs CMS Dijet selection





- With the higher jet thresholds used for the CMS paper we are less sensitive to background fluctuations
  - ATLAS 100/20, CMS: 120/50 for leading/sub-leading



# ATLAS input



- The large  $\sigma$  (20GeV) smearing is based on a Gaussian fit to the low  $p_T$  part of the ATLAS min bias jet spectrum
  - ATLAS reports  $\sigma$  ~8 GeV for their background fluctuations



#### 20GeV smearing closure test





# Centrality definition

- Determined by the total energy from both HF calorimeters
- Split minimum bias events into centrality bins
- Relate to <N<sub>part</sub>> with calculation based on a Glauber model (nucleonnucleon scattering)
  - Finite detector resolution
    effects from fully simulated
    Monte Carlo AMPT events

M.L. Miller et al., Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci **57** (2007) 205

- events (a) CMS PbPb  $\sqrt{s_{NN}}$ =2.76 TeV **Minimum Bias Trigger** 10 bias Jet Trigger 10<sup>-2</sup> unm - 10% - 50% - 20% 30% 30% %0 %0 10<sup>-5</sup> 20 80 140 160 40 60 120 1000 Sum HF Energy (TeV Pb CMS: arXiv:1102.1957
- Selecting rare processes (high p<sub>T</sub> jets): bias towards central collisions





# Jet Energy Scale

Match reconstructed CaloJet to GenJet within a cone  $\Delta R = 0.3$  ( $\Delta R = \sqrt{(\Delta \Phi^2)}$ 1+6∆n(~a)) 50-100% CM/56 1.6 (b) 20-30% (C) 0-10% CaloJet: jet reconstructed from calorimeter towers after detector simulation **≿p<sub>T</sub><sup>caloJei</sup>∕p<sub>T</sub>**GenJet Leading Jet Response \_4 GenJet: jet reconstructed from PYTHIA Generator particles **1**L2 adding Jet  $p_{T,1} > 120 \text{ GeV} / 2 \rightarrow \text{ for this analysis} - 2$ Subleading Jet (in same event)  $p_{T,2} > 50$  GeV/c,  $|\eta| < 2 \rightarrow_1$  for this analysis Residual not used to correct energy, but is included in systematic uncertainty **QPB**YTHIA (QCD dijet) + DAT**A** PbPb Minimum Bias) 0.8 CMS: arXiv:1102.1957 200 100 150 200 150 200 100 150 100 1.6⊢(a) 50-100% CMS + (b)20-30% (c) 0-10% iterativeCone R=0.5 with **PYTHIA+DATA** cp<sup>CaloJet</sup>/p<sup>GenJet</sup>> pileup subtraction 1.4 • Leading Jet Response Subleading Jet Response 1.2 **0.8** 200 100 200 150 100 200 100 150 150 p<sub>T</sub><sup>GenJet</sup> (GeV/c) p\_GenJet (GeV/c) p\_GenJet (GeV/c) HPHD, Palaiseau, May 30 2011 64 Marguerite Tonjes (UMD)

## Jet Resolution

- Match reconstructed CaloJet to GenJet within a cone  $\Delta R = 0.3$
- Resolution is standard deviation of Gaussian Calo Jet/GenJet • Resolution is standard deviation of Gaussian Calo Jet/GenJet • Tesponse • Develution degraded the standard deviation of the bate of the background in
- $\frac{1}{\sqrt{2}}$  Resolution degraded by ~30% due to heavy-ion background in most central events 1 1
- PYTHIA (QCD dijet) + DATA (PbPb Miningum Bias)







# Jet Finding Efficiency

- Match reconstructed CaloJet to GenJet within a cone  $\Delta R = 0.3$
- Fully efficient for leading jet selection (p<sub>T,1</sub>>120 GeV/c)
- High efficiency for subleading jet selection (p<sub>T,2</sub>> 50 GeV/c)
- PYTHIA (QCD dijet) + DATA (PbPb Minimum Bias)





# PbPb Collision with CMS





HPHD, Palaiseau, May 30 2011



## PbPb Collision with CMS



#### ATLAS Dijet Asymmetry



 $p_{T,1} > 100 \text{ GeV}$  $p_{T,2} > 25 \text{ GeV}$  $\Delta \phi_{1,2} > \pi/2$  $|\eta_{jet}| < 2.8$ 

ATLAS Collaboration, "Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at sqrt(S<sub>NN</sub>)= 2.76 TeV with the ATLAS Detector at the LHC", *Phys. Rev. Lett.* **105** (2010) 252303, arXiv:1011.6182.

Winter Workshop on Nuclear Dynamics, 2011

Edward Wenger - Slide 37



HPHD, Palaiseau, May 30 2011








## Result of the $cos(\phi_{track}-\phi_{jet1})$



## - $P_{T,track} COS(\phi_{track}-\phi_{jet1})$

