

Non-Photonic Electron-Hadron Correlations measured by STAR/RHIC

Wenqin Xu University of California, Los Angeles

High-pT Probes of High-Density QCD at the LHC

École Polytechnique, Palaiseau, France 01/Jun/2011

Outline

- 1: Introduction
- 2: Analysis methods for Non-Photonic Electrons (NPE)
- 3: NPE-hadron correlation:

use the **near side in p+p** collisions to separate bottom/ charm

4: NPE-hadron correlation:

use the **away side in Au+Au** collisions to study heavy flavor tagged jet-medium interaction

5: Summary

Motivation for NPE studies

NPE: semi-leptonic decays of open heavy flavor hadrons $c \rightarrow e^+ + anything(9.6\%)$ $B \rightarrow e^+ + anything(10.86\%)$ PDG2010

NPE is the proxy of heavy flavor quarks

➢ Initial gluon fusion (hard process) dominates heavy flavor production – pQCD applicable.

Study the interactions of heavy quarks with the hot and dense medium.

Access to high p_T regime of heavy flavor quarks

Access to high p_T regime of heavy flavors

NPE-hadron azimuthal correlations

STAR detector

Large acceptance: -1 < η < 1, 0 < ϕ < 2π

BSMD: a wire proportional counter - strip readout detector, embedded at ~5.6 radiation lengths depth in BEMC. Two layers/planes of strips, along eta and phi directions.

NIM A 499 (2003) 725-739

Wenqin Xu QM 2011

Common Detectors in NPE analyses: Time Projection Chamber(TPC) Barrel Electromagnetic Calorimeter(BEMC) Barrel Shower Maximum Detector(BSMD)

Analysis principle

$$\Delta \phi_{\text{NPE}} = \Delta \phi_{\text{inclusive}} - (\Delta \phi_{\text{OppoSign}} - \Delta \phi_{\text{SameSign}})/\epsilon - \Delta \phi_{\text{hadron}}$$

 $\Delta \phi$ could be other common variables, e.g. yield, elliptical flow (v_2), etc

Analysis principle

 $\Delta \phi$ could be other common variables, e.g. yield, elliptical flow (v_2), etc

High tower triggers

High tower triggers (equivalently) require the highest transverse energy (E_T) measured by BEMC towers in an event exceeding certain energy thresholds

For example: 4 different high tower triggers in Run10 at STAR: NPE11 with $E_T > 2.64$ GeV, NPE15 with $E_T > 3.6$ GeV NPE18 with $E_T > 4.3$ GeV, NPE25 with $E_T > 6.0$ GeV Effectively trigger on the high p_T regime of heavy flavor quarks

Analysis principle

 $\Delta \phi_{\text{NPE}} = \Delta \phi_{\text{inclusive}} - (\Delta \phi_{\text{OppoSign}} - \Delta \phi_{\text{SameSign}})/\epsilon - \Delta \phi_{\text{hadron}}$ $\Delta \phi$ could be other common variables, e.g. yield, elliptical flow (v₂), etc

Electron identification: Tower Energy over TPC momentum ratio

Electrons deposit most of their energy into BEMC

->

Tower Energy over TPC momentum ratio $(E/P) \sim 1$ Not necessary for hadrons!

Electron identification: shower profile

Electron showers are widely developed, firing several BSMD strips.

Hadron showers are much less developed, firing mostly one or zero strip.

Electron identification: energy loss $n\sigma_{electron}$

" B_e is the expected mean electron dE/dx from Bichsel[1] function, and σ_e is TPC resolution of $\log((dE/dx)/B_e)$ " STAR Phys. Rev. D 83 (2011) 052006

Hadron contamination < 1%

[1]:H. Bichsel, Nucl. Instrum. Methods Phys. Res., Sect. A 562, 154 (2006). 13

Analysis principle

 $\Delta \phi$ could be other common variables, e.g. yield, elliptical flow (v_2), etc

Photonic electrons

The main background is photonic electrons (PE):

Photon conversions in material Dalitz decays of pseudoscalar mesons

$$\gamma \rightarrow e^+ + e^-$$

 $\pi^0, \eta \rightarrow \gamma + e^+ + e^-$

Reconstruct the invariant masses of electron pairs (unlike/like sign), apply opening angles cuts

- PE = unlike sign pairs like sign pairs
- The efficiency of PE reconstruction is evaluated by studying PYTHIA+GEANT tracks embedded into real events
- Next: Statistical subtraction

STAR Phys. Rev. D 83 (2011) 052006

Analysis principle

 $\Delta \phi$ could be other common variables, e.g. yield, elliptical flow (v_2), etc

NPE spectrum in p+p at 200GeV

17

Near side correlation in p+p 200 GeV

Different decay kinematics for charm and bottom hadrons \rightarrow Crucial for charm and bottom discrimination.

Combine the obtained b/c separation with NPE R_{AA} (PHENIX:arXiv:1005.1627)

STAR: PRL 105, 202301 (2010)

Near side correlation in p+p 500 GeV

PYTHIA p+p 500 GeV

PYTHIA8: e(D)-h and e(B)-h correlation in 500 GeV p+p collisions at 500GeV *STAR Heavy Flavor Tune v1.1 Mini Bias Mode*

Bottom/Charm contributions in p+p 500 GeV

Bottem/Charm contributions to their decay electrons are obtained by comparison against PYTHIA

PYTHIA 8 STAR Heavy Flavor Tune v1.1 Mini Bias Mode

≻Fit function:

$$r_B f_{e_B}(\Delta \phi) + (1 - r_B) f_{e_D}(\Delta \phi) + const.$$

 $\mathbf{r}_{\mathbf{B}}$ is relative B contribution f_{e_B} , f_{e_D} are the correlations from PYTHIA

The extracted e_B/(e_B+e_D) ratio is higher than 60% within the current statistics.
 Error bars are statistical only.

Away side correlation: d+Au vs Au+Au

Asso. tracks $p_T 0.15 \sim 0.5 \text{GeV/c}$, $|\eta| < 1$; NPE $p_T 3 \sim 6 \text{GeV/c}$

Vertical error bars are statistical only. The open star data points are reflected points. Red dashed curves: v_2 background range set with NPE v_2 being zero and hadron v_2 .

Very large uncertainties associated with the background, currently under study, not subtracted.

Associated tracks with higher p_T

Vertical error bars are statistical only. The open star data points are reflected points. Red dashed curves: v_2 background range with by NPE v_2 being zero and hadron v_2 .

both near side and away side have intriguing correlations Background studies are in progress ~half statistics in Run10; Run11 will have similar statistics.24

Summary

 \diamond The near side of NPE-h correlations in p+p collisions have been used to disentangle bottom/charm contributions.

 \diamond We can study the heavy flavor tagged jet-medium interactions by using the NPE-h correlations in Au+Au 200GeV:

intriguing structures begin to show up.

Federico Antinori - QM2011 - Annecy

29

Backup

La frontière

29

- any residual room for medium response?
- \rightarrow look at the small print on the away side
 - two-dimensional in η,ϕ
 - use information on direction of recoiling parton
 - · around re-emerging away-side jets
 - around away-side heavy flavour
- "Annecy spectrum" promises a beautiful tool
- →quantitative comparisons with full hydro
 - extract information on η/s, initial conditions
 (Glauber, CGC, ...)

PHENIX NPE-hadron corr

arXiv:1011.1477

FIG. 4: (color online) $e_{inc} - h$, $e_{bkg} - h$ and $e_{HF} - h$ (solid circles) for p+p (top panel) and Au+Au (bottom panel) collisions for $2.0 < p_{T,e} < 3.0 \text{ GeV}/c$ and $1.5 < p_{T,h} < 2.0 \text{ GeV}/c$. The overall normalization uncertain of 7.9% in p+p and 9.4% in Au+Au is not shown.

eHF – h jet functions for Au+Au (solid blue circles) and p+p collisions for 3.0–4.0 GeV/c Electron triggers and the hadron-pT bins indicated.

Photonic electron (PE) reconstruction

STAR NPE-h correlation mixing event backgrounds

Inclusive trigger tracks-hadron (asso p_T 0.15~0.5GeV) correlations from mixed events The background for NPE-h correlation. 4 centrality bins: Black dots: 0~5% Red dots: 5~10% Green dots:10~20% Blue dots: 20~30%

