

"High-pT Probes of High-Density QCD at the LHC" Paris, 30 May- 1 June 2011

Olga Driga Laboratory SUBATECH, Nantes, France For the ALICE collaboration

Outline

- •Photon physics scope
- •ALICE setup
- • π^0 and η spectra
- • η to π^0 ratio
- •Azimuthal anisotropy v_2
- •Calorimeter performance in heavy ion collisions •Nuclear modification factor $R_{_{AA}}$ of π^0
- Direct photons
- Photon-hadron correlations
- •Summary

2

Why measure photons?

- Photons, having negligible final state interaction, carry undistorted information about various stages of the nuclear matter evolution.
- Direct photons are produced in:
 - photons emission from QGP (qq–annihilation and Compton scattering, etc)
 - photons emission from hadron gas $(\pi\rho \rightarrow \pi\gamma, \pi\pi \rightarrow \rho\gamma, \omega \rightarrow \pi^0\gamma)$
 - **prompt photons**, produced directly in hard scatterings of partons of colliding nuclei, dominate at high p_{τ}
 - this also includes *fragmentation photons*, produced in hard processes
 - *thermal photons*, produced in thermalized nuclear matter radiation at low and intermediate p_{τ} .
 - hard medium-induced photons can be produced in:
 - jet-photon conversion (annihilation and Compton scattering of hard and thermal partons)
 - bremsstrahlung of hard partons in the medium
- Decay photons reveal medium-induced modifications of hadron properties.
- Interferometry of photons can be used as a tool to measure space-time dimensions of the source.

Photon Physics

Decay photons: Neutral meson spectra, R_{AA} , V_2 ... Chemical composition: π^0 , η , ω

Direct photons: Spectra, R_{AA}, v₂... Inclusive, Prompt, Thermal

Direct photon – jet correlations

ALICE calorimeters

PHOS

- Active element: crystal of lead tungstate 2.2×2.2×18 cm³.
- Geometry 2010: 3 modules 64×56 crystals each; distance from IP to active surface: 460 cm
- **Aperture**: $|\eta| < 0.13$, $\Delta \phi = 60^{\circ}$
- Energy range: 0<E<100 GeV
- Material budget from IP to PHOS: 0.2X₀.

EMCAL

- Active element: tower of 77 layers (1.4mm lead + 1.7 mm scintillator) 6× 6× 25cm³.
- **Geo 2010**: 4 super modules 24×48 towers each; distance from IP to active surface: 430 cm
- **Aperture**: $|\eta| < 0.7$, $\Delta \phi = 40^{\circ}$ (2010); $\Delta \phi = 100^{\circ}$ (2011).
- Energy range: 0<E<250 GeV
- Material budget from IP to EMCAL: 0.5X₀ (2010), 0.5-0.8X₀ (2011)

$$\mathbf{M} = \sqrt{(2 \mathbf{E}_{1} \mathbf{E}_{2} (1 - \cos(\theta_{12})))}$$

Energy resolution in PHOSEnergy
$$\frac{\Delta E}{E} = \frac{1.3\%}{E \,(\text{GeV})} \oplus \frac{3.3\%}{\sqrt{E \,(\text{GeV})}} \oplus 1.12\%$$
 $\frac{\Delta E}{E} = \frac{1.2\%}{E}$

Energy resolution in EMCAL $\frac{\Delta E}{E} = \frac{4.8\%}{E \text{ (GeV)}} \oplus \frac{11.3\%}{\sqrt{E \text{ (GeV)}}} \oplus 1.7\%$

•Position resolution ($\delta x/x$) (where δx is your precision) is better at low p_{τ} •Energy resolution is better at high p_{τ}

ALICE tomography with conversions

Measurements of the conversion vertex is a powerful tool to x-ray ALICE up from beam pipe to up to the middle of TPC.

ALICE material budget, 11.4 % X_0 up to half TPC agrees within 3.4%-6% with its implementation in GEANT.

Neutral mesons

- •Neutral mesons are reconstructed via two-photon invariant mass spectra
- •Background subtraction using mixed events
- •Bin counting for signal subtraction
- •Additional cuts:
- -PHOS:
- E_{cluster}> 300 MeV
- more than 3 cells in a cluster (to suppress hadronic background)
 -EMCAL:

```
E<sub>cluster</sub> > 500 MeV
```

-Conversion:

- 2 e^+e^- track produced from the same secondary vertex
- e⁺e⁻ identified in TPC by dE/dx
- min. opening angle gamma-gamma: 5 mrad
- p_T(e⁺), p_T(e⁻)>50 MeV/c

Main systematic uncertainties

Calorimeters

-Energy irresolution and residual miscalibration

- -energy scale nonlinearity
- -pi0 loss due to photon conversion in the ALICE medium
- -signal extraction

Conversions

- Material budget
- signal extraction
- background estimation
- e+e- identification
- track selection

ubatech

One common set of NLO parameters cannot describe data both at 900 GeV and 7 TeV

NLO pQCD (W. Vogelsang; F. Arleo et al) PDF: CTEQ6M5, FF: DSS, $\mu=0.5p_T$, p_T , $2p_T$ NLO predictions with DSS FF: -agree with ALICE data at 900 GeV -overestimates cross-section for 2.76 and 7 TeV for all scales -the slope of data and NLO are slightly different -BKK FF gives better agreement at 7 TeV data

ן meson: ALICE data vs NLO

One common set of NLO parameters cannot describe data both at 900 GeV and 7 TeV

NLO pQCD (W. Vogelsang; F. Arleo et al) PDF: CTEQ6M5, FF: AESSS, μ =0.5p_T, p_T, 2p_T NLO predictions with AESSS FF (same trend as for π^0) -agree with ALICE data at 900 GeV and for $p_T>3$ GeV at 2.76 TeV -overestimates cross-section 7 TeV for all scales -the slope of data and NLO are slightly different

ubatech

Uncertainties of NLO predictions

Gluon Fragmentation function is not well constrained.Gluon FF is more important at LHC than at RHIC.

PHENIX PRC 75, 024909 (2007)

•Ratio of neutral meson yields to π^0 is universal for a wide energy range. Precise measurements of neutral meson spectra is necessary for direct photon search. Ratio of spectra are needed for nuclear transport models. • η/π^0 ratio follows the trend observed at lower energies. • η/π^0 ratio is consistent with NLO pQCD calculations

$\int \eta/\pi^0$ ratio: world data compilation $\int \eta/\pi^0$

•Ratio of neutral meson yields to π^0 is universal for a wide energy range. Precise measurements of neutral meson spectra is necessary for direct photon search. Ratio of spectra are needed for nuclear transport models. • η/π^0 ratio follows the trend observed at lower energies. • η/π^0 ratio is consistent with NLO pQCD calculations

Flow and non-flow

•Particle azimuthal distribution measured with respect to the reaction plane is not isotropic.

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos\left(n\left(\varphi - \Psi_{RP}\right)\right)\right)$$
$$v_{n} = \left\langle\cos\left(n\left(\varphi_{i} - \Psi_{RP}\right)\right)\right\rangle$$

 $\begin{array}{l} \bullet v_{_n} \text{ quantify the event anisotropy} \\ \bullet \Psi_{_{RP}} \text{ can be estimated from the particle} \\ \text{azimuthal distribution} \end{array}$

Problems:

•Non-flow (other sources of azimuthal correlations) quantified by δ_n :

$$\langle \cos(n(\varphi_i - \varphi_j)) \rangle = \langle v_n^2 \rangle + \delta_n$$

•Flow fluctuations:

$$\langle v_n^2 \rangle = \langle v_n \rangle^2 + \sigma_{vn}^2$$

Azimuthal anisotropy of π^0 : v

ALICE studies azimuthal anisotropy in production of many identified hadrons. π^0 mesons is not an exclusion

 $-\pi^0 v_2$ is in agreement with charged pions measurements - sufficient statistics is needed in order to reduce the error bars

ubatech

Calorimeter performance in HIC Substach

Calorimeter performance in HIC Subscen

Pi0 peak in the most central collisions.

Calorimeter performance in HIC

EMCAL enters the stage

Pi0 peak in the most central collisions.

Calorimeter PbPb performance

•Uncorrected spectra of reconstructed π^0 s in different centralities normalized by number of PbPb collisions in a given centrality.

•Efficiency calculation is a challenging task, as it drops dramatically in the high detector occupancy environment.

•Uncorrected π^0 spectra give us an idea of the accessible range for R_a 1< p <20 GeV

Direct photons and π^0 R

γ thermal γ prompt γ prompt γ inclusive -Hard partons lose energy in the hot medium. - $\pi^0 R_{AA}$ suppression at high p_{T} .

ubatech

prompt+thermal=direct

 $\pi^0\,R_{_{AA}}$ with conversions

ubatech

Predicted rates for direct photons

•The first year of LHC with pp@7 TeV delivered 10 nb⁻¹ to ALICE. •Expected p_{τ} ranges for direct photon spectra are >in PHOS p_{τ} <8 GeV/c

≻in EMCAL p_T<12 GeV/c

•Rates were calculated using INCNLO[1] program (pQCD NLO).

ubatech

Direct photons

First attempt to measure direct photons in ALICE.

Photon-hadron correlations

1/N_t dN/d∆∲ (rad⁻¹)

ALICE performance in pp already illustrates near- and away- side peaks.

Summary

- ALICE is well equipped by photon detectors: PHOS and EMCAL
- ALICE will measure direct photon, neutral meson spectra, γ -hadron and γ -jet correlations, jet fragmentation functions.
- The first year LHC run with pp@7 TeV has brought results on π° spectrum at p_T<25 GeV/c, η meson spectrum at p_T<20 GeV/c, η to π° ratio at p_T<20 GeV/c.
- In a first year heavy-ion run PbPb@2.76 ATeV at LHC calorimeters can measure π^0 spectrum and R_{AA} up to p_T<20 GeV/c depending on centrality.
- Azimuthal anisotropy v_2 of π^0 production was measured in ALICE.
- $\pi^{_0} \mbox{ R}_{_{A\!A}}$ observed with conversion method show strong suppression at high $\mbox{ p}_{_{\!T}}$

Thank you for attention!

Backup

Physics observables

Thermal photons

F.Arleo et al., arXiv:hep-ph/0311131

- •Thermal photon from hadron gas contribute at low $p_{+}>2$ GeV.
- •Prompt photons contribute at $p_{+}>3$ GeV.
- •Thermal photons from QGP radiation (up to 10% of inclusive photons) contribute at p_1 >10 GeV.
- •Thermal photons have large theoretical uncertainties.

Joatech

Thermal photons

ω/π^0 ratio: world data compilation

PHENIX, PRC 75, 051902(R) (2007)

What is expected at LHC scale?

ALICE

ALICE calorimeters

PHOS

- Active element: crystal of lead tungstate 2.2×2.2×18 cm³.
- Geometry 2010: 3 modules 64×56 crystals each; distance from IP to active surface: 460 cm
- **Aperture**: $|\eta| < 0.13$, $\Delta \phi = 60^{\circ}$
- Energy range: 0<E<100 GeV
- Material budget from IP to PHOS: 0.2X₀.
- Energy resolution:

$$\frac{\Delta E}{E} = \frac{1.3\%}{E \text{ (GeV)}} \oplus \frac{3.3\%}{\sqrt{E \text{ (GeV)}}} \oplus 1.12\%$$

30.05-1.06.2011

Olga Driga, Photon physics in ALICE

EMCAL

- Active element: tower of 77 layers (1.4mm lead + 1.7 mm scintillator) 6× 6× 25cm³.
 - Geo 2010: 4 super modules 24×48 towers each; distance from IP to active surface: 430 cm
 - **Aperture**: $|\eta| < 0.7$, $\Delta \phi = 40^{\circ}$ (2010); $\Delta \phi = 100^{\circ}$ (2011).
- Energy range: 0<E<250 GeV
- Material budget from IP to EMCAL: 0.5X₀ (2010), 0.5-0.8X₀ (2011)
- Energy resolution:

44

Expected event rates in ALICE PHOS in pp

The first year of LHC with pp@7 TeV delivered 10 nb⁻¹ to ALICE. Expected p_{τ} ranges for spectra in PHOS:

•π⁰: p_τ<25 GeV/c

•η: p_T<20 GeV/c

•γ : p_τ<8 GeV/c

Cross-sections were calculated by INCNLO[1] for π^0 and direct photons and by Pythia 6 for η . [1] P. Aurenche, et al., Eur. Phys. J. C 13,347 (2000)

Expected event rates in ALICE EMCAL in pp

 $pp \rightarrow \eta X, \eta \rightarrow \gamma \gamma$

In december 2010 EMCAL was fully installed, $\Delta \phi$ = 100° Expected p_T ranges for spectra in EMCAL at L=10 nb⁻¹

- •π⁰: p_T<25 GeV/c •η: p_T<25 GeV/c
- •γ : p_T<12 GeV/c

Cross-sections were calculated by INCNLO[1] for π^0 and direct photons and by Pythia 6 for η . [1] P. Aurenche, et al., Eur. Phys. J. C 13,347 (2000)

Event selection

Minimum bias trigger:

•Minimum bias event is selected by the coincidence of the bunch crossing signal and the condition:

SPD|V0A|V0C

Not a beam-gas event type calculated offline by VOA or VOC
Efficiency of selecting inelastic pp events is ~90%.

Tsallis fit parameters

	Fit	value	sys Error	χ^2	ndf	χ^2/ndf
7 TeV:	$d\sigma^{\pi^0}/dy$ (pb) n $T_{Tsallis}$ (GeV/c)	$\begin{array}{r} 1.72 \cdot 10^{11} \\ 6.79 \\ 0.140 \end{array}$	0.096·10 ¹¹ 0.06 0.004	12.8	33.00	0.39
2.76 TeV:	$d\sigma^{\pi^0}/dy$ (pb) n $T_{Tsallis}$ (GeV/c)	$\begin{array}{r} 1.24 \cdot 10^{11} \\ 7.05 \\ 0.130 \end{array}$	$\begin{array}{c} 0.16{\cdot}10^{11} \\ 0.18 \\ 0.008 \end{array}$	7.9	16.00	0.49
0.9 TeV:	$d\sigma^{\pi^0}/dy$ (pb) n $T_{Tsallis}$ (GeV/c)	$\begin{array}{r} 6.51 \cdot 10^{10} \\ 8.4 \\ 0.151 \end{array}$	$\begin{array}{c} 1.12{\cdot}10^{10} \\ 0.6 \\ 0.015 \end{array}$	7.5	13.00	0.57
	Fit	value	sys Error	χ^2	ndf	χ^2/ndf
7 ToV/:	Fit $d\sigma^{\eta}/dy$ (pb)	value 1.48 ·10 ¹⁰	sys Error 0.17·10 ¹⁰	χ^2	ndf 10.00	χ^2/ndf 0.2
7 TeV:	Fit $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c)	value 1.48 ·10 ¹⁰ 7.2 0.239	sys Error 0.17·10 ¹⁰ 0.5 0.021	χ^2	ndf 10.00	χ^2/ndf 0.2
7 TeV:	Fit $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb)	value 1.48 ·10 ¹⁰ 7.2 0.239 1.08 ·10 ¹⁰	sys Error 0.17·10 ¹⁰ 0.5 0.021 0.3·10 ¹⁰	χ^{2} 2.0 1.31	ndf 10.00 6.00	χ ² /ndf 0.2 0.22
7 TeV: 2.76 TeV:	Fit $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb) n	value 1.48 ·10 ¹⁰ 7.2 0.239 1.08 ·10 ¹⁰ 7.05	sys Error $0.17 \cdot 10^{10}$ 0.5 0.021 $0.3 \cdot 10^{10}$ fixed as π^0	χ^{2} 2.0 1.31	ndf 10.00 6.00	χ ² /ndf 0.2 0.22
7 TeV: 2.76 TeV:	Fit $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c)	value 1.48 ·10 ¹⁰ 7.2 0.239 1.08 ·10 ¹⁰ 7.05 0.215	sys Error $0.17 \cdot 10^{10}$ 0.5 0.021 $0.3 \cdot 10^{10}$ fixed as π^0 0.020	χ^{2} 2.0 1.31	ndf 10.00 6.00	χ ² /ndf 0.2 0.22
7 TeV: 2.76 TeV:	Fit $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb) n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb)	value 1.48 ·10 ¹⁰ 7.2 0.239 1.08 ·10 ¹⁰ 7.05 0.215 2.1 ·10 ¹⁰	$\begin{array}{c} \text{sys Error} \\ 0.17 \cdot 10^{10} \\ 0.5 \\ 0.021 \\ \end{array} \\ \begin{array}{c} 0.3 \cdot 10^{10} \\ \text{fixed as } \pi^0 \\ 0.020 \\ \end{array} \\ \begin{array}{c} 2.3 \cdot 10^{10} \end{array}$	χ ² 2.0 1.31	ndf 10.00 6.00	χ ² /ndf 0.2 0.22
7 TeV: 2.76 TeV: 0.9 TeV:	Fit $d\sigma^{\eta}/dy$ (pb)n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb)n $T_{Tsallis}$ (GeV/c) $d\sigma^{\eta}/dy$ (pb)n	$\begin{array}{r} \text{value} \\ 1.48 \cdot 10^{10} \\ 7.2 \\ 0.239 \\ 1.08 \cdot 10^{10} \\ 7.05 \\ 0.215 \\ 2.1 \cdot 10^{10} \\ 8.4 \end{array}$	$\begin{array}{c} {\rm sys \ Error} \\ 0.17 \cdot 10^{10} \\ 0.5 \\ 0.021 \\ \end{array} \\ \begin{array}{c} 0.3 \cdot 10^{10} \\ {\rm fixed \ as \ } \pi^0 \\ 0.020 \\ \end{array} \\ \begin{array}{c} 2.3 \cdot 10^{10} \\ {\rm fixed \ as \ } \pi^0 \\ \end{array} \end{array}$	χ ² 2.0 1.31	ndf 10.00 6.00	χ ² /ndf 0.2 0.22

Jet tagging by prompt photons

Direct γ -recoil hadron suppression

Trigger L0 in calorimeters

ubatech

ALICE

Methods of photon measurements

