

"High-pT Probes of High-Density QCD at the LHC" Paris, 30 May- 1 June 2011

Olga Driga Laboratory SUBATECH, Nantes, France For the ALICE collaboration

Outline

- Photon physics scope
- ●ALICE setup
- $\cdot\pi^0$ and η spectra
- •η to π^0 ratio
- •Azimuthal anisotropy $v₂$
- •Calorimeter performance in heavy ion collisions •Nuclear modification factor $\mathsf{R}_{_{\mathsf{AA}}}$ of $\pi^{\scriptscriptstyle{0}}$
- •Direct photons
- ●Photon-hadron correlations
- •Summary

Why measure photons?

- Photons, having negligible final state interaction, carry undistorted information about various stages of the nuclear matter evolution.
- Direct photons are produced in:
	- photons emission from QGP (qq–annihilation and Compton scattering, etc)
	- photons emission from hadron gas $(\pi \rho \rightarrow \pi \gamma, \pi \pi \rightarrow \rho \gamma, \omega \rightarrow \pi^0 \gamma)$
	- *prompt photons*, produced directly in hard scatterings of partons of colliding nuclei, dominate at high p_{τ}
	- this also includes *fragmentation photons*, produced in hard processes
	- *thermal photons*, produced in thermalized nuclear matter radiation at low and intermediate p_T .
	- *hard medium-induced photons* can be produced in:
		- jet-photon conversion (annihilation and Compton scattering of hard and thermal partons)
		- bremsstrahlung of hard partons in the medium
- Decay photons reveal medium-induced modifications of hadron properties.
- Interferometry of photons can be used as a tool to measure space-time dimensions of the source.

Photon Physics

Decay photons: Neutral meson spectra, R_{AA} , $V_2...$ Chemical composition: π^0 ,η, ω

Direct photons: Spectra, R_{AA} , $V_2...$ *Inclusive, Prompt, Thermal*

Direct photon – jet correlations

ALICE setup

ALICE setup

ALICE setup

PMD

V₀

ACORDE

EMCal TOF

 TRD

ALICE setup

Absor

TPC+ITS y's converted into e[±] pairs between beam pipe and middle of TPC can be detected Conversion *probability* $\approx 9\%$

ubatech

L3 Magnet

PHOS

HMPID

30.05-1.06.2011 Olga Driga, Photon physics in ALICE 8

 $\Delta \phi = 60^{\circ}$ |η| < 0.12

 $p+p - E\pi = 5$ GeV $\rightarrow \sigma \approx 7$

MeV/c2 (4 MeV 2011)

PHOS PbWO4 crystals

ALICE calorimeters

PHOS

- **Active element: crystal of** lead tungstate 2.2× 2.2× 18 $\rm cm^3$.
- **Geometry 2010**: 3 modules 64× 56 crystals each; distance from IP to active surface: 460 cm
- **Aperture**: |η|<0.13, ∆ϕ= 60°
- **Energy range:** $0 < E < 100$ **GeV**
- **Material budget** from IP to PHOS: $0.2X_{0}$.

EMCAL

- **Active element:** tower of 77 layers $(1.4$ mm lead $+1.7$ mm scintillator) $6\times 6\times 25$ cm³.
- **Geo 2010**: 4 super modules 24× 48 towers each; distance from IP to active surface: 430 cm
- **Aperture**: $|\eta|$ <0.7, $\Delta \varphi = 40^{\circ}$ $(2010); \Delta \varphi = 100^{\circ} (2011).$
- **Energy range**: 0<E<250 GeV
- **Material budget** from IP to $EMCAL: 0.5X₀$ (2010), 0.5-0.8 $X₀$ (2011)

$$
M = \sqrt{\left(2\,E_1\,E_2(1-\cos\left(\theta_{12}\right))\right)}
$$

(GeV) 11.3% (GeV) 4.8% $=\frac{4.676}{\pi (6.55)}\oplus \frac{11.576}{\pi (2.55)}$ Δ E *E* (GeV) \sqrt{E} *E* 1.12% (GeV) 3.3% (GeV) 1.3% $=\frac{1.976}{\sqrt{6.330}}$ \oplus $\frac{9.976}{\sqrt{6.333}}$ \oplus Δ E *E* (GeV) \sqrt{E} *E* Energy resolution in PHOS Energy resolution in EMCAL

 \bullet Position resolution (δx/x) (where δx is your precision) is better at low p $_{_{\rm T}}$ \bullet Energy resolution is better at high $\bm{{\mathsf{p}}}\newcommand{\hh}{{\mathsf{h}}}_\tau$

1.7%

ALICE tomography with conversions ubatech

Measurements of the conversion vertex is a powerful tool to x-ray ALICE up from beam pipe to up to the middle of TPC.

ALICE material budget, 11.4 % $\mathrm{X}_{_{\mathrm{0}}}$ up to half TPC agrees within 3.4%-6% $\,$ with its implementation in GEANT.

Neutral mesons

- •Neutral mesons are reconstructed via two-photon invariant mass spectra
- •Background subtraction using mixed events
- •Bin counting for signal subtraction
- Additional cuts:
- -PHOS:
- \cdot E_{cluster} > 300 MeV
- more than 3 cells in a cluster (to suppress hadronic background) -EMCAL:

```
E_{\text{cluster}}> 500 MeV
```
-Conversion:

- 2 e⁺e⁻ track produced from the same secondary vertex
- e⁺e⁻ identified in TPC by dE/dx
- min. opening angle gamma-gamma: 5 mrad
- $p_{T}(e^{+}), p_{T}(e^{-}) > 50$ MeV/c

Main systematic uncertainties

-Energy irresolution and residual miscalibration

- -energy scale nonlinearity
- -pi0 loss due to photon conversion in the ALICE medium
- -signal extraction

Calorimeters Conversions

- Material budget
- signal extraction
- background estimation
- e+e- identification
- track selection

ubatech

One common set of NLO parameters cannot describe data both at 900 GeV and 7 TeV

NLO pQCD (W. Vogelsang; F. Arleo et al) PDF: CTEQ6M5, FF: DSS, μ =0.5p_t, p_t, 2p_t

NLO predictions with DSS FF: -agree with ALICE data at 900 GeV -overestimates cross-section for 2.76 and 7 TeV for all scales -the slope of data and NLO are slightly different -BKK FF gives better agreement at 7 TeV data

One common set of NLO parameters cannot describe data both at 900 GeV and 7 TeV

NLO pQCD (W. Vogelsang; F. Arleo et al) PDF: CTEQ6M5, FF: AESSS, μ =0.5p_t, p_t, 2p_t

NLO predictions with AESSS FF (same trend as for π^0) -agree with ALICE data at 900 GeV and for p_{τ} > 3 GeV at 2.76 TeV -overestimates cross-section 7 TeV for all scales -the slope of data and NLO are slightly different

Uncertainties of NLO predictions **ubatech**

●Gluon Fragmentation function is not well constrained. ●Gluon FF is more important at LHC than at RHIC.

PHENIX PRC 75, 024909 (2007)

•Ratio of neutral meson yields to π^0 is universal for a wide energy range. Precise measurements of neutral meson spectra is necessary for direct photon search. Ratio of spectra are needed for nuclear transport models. \cdot η/ π^0 ratio follows the trend observed at lower energies. \cdot η/ π^0 ratio is consistent with NLO pQCD calculations

ubatech η/π^0 ratio: world data compilation

•Ratio of neutral meson yields to π^0 is universal for a wide energy range. Precise measurements of neutral meson spectra is necessary for direct photon search. Ratio of spectra are needed for nuclear transport models. \cdot η/ π^0 ratio follows the trend observed at lower energies. \cdot η/ π^0 ratio is consistent with NLO pQCD calculations

Flow and non-flow

●Particle azimuthal distribution measured with respect to the reaction plane is not isotropic.

$$
E \frac{d^3 N}{d^3 p} = \frac{1}{2\pi} \frac{d^2 N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2 v_n \cos \left(n \left(\varphi - \Psi_{RP} \right) \right) \right)
$$

$$
v_n = \left\langle \cos \left(n \left(\varphi - \Psi_{RP} \right) \right) \right\rangle
$$

 $\boldsymbol{\cdot}$ v_n quantify the event anisotropy $\cdot \Psi_{_{\mathrm{RP}}}$ can be estimated from the particle azimuthal distribution

Problems:

•Non-flow (other sources of azimuthal correlations) quantified by δ_{n} :

$$
\langle \cos(n(\varphi_i-\varphi_j))\rangle = \langle v_n^2 \rangle + \delta_n
$$

●Flow fluctuations:

$$
\langle v_n^2 \rangle = \langle v_n \rangle^2 + \sigma_{vn}^2
$$

Azimuthal anisotropy of π^0 : v 2

ALICE studies azimuthal anisotropy in production of many identified hadrons. π^0 mesons is not an exclusion

 π^0 v₂ is in agreement with charged pions measurements - sufficient statistics is needed in order to reduce the error bars

Joatech

Calorimeter performance in HIC ubatech

Calorimeter performance in HIC ubatech

Pi0 peak in the most central collisions.

30.05-1.06.2011 Olga Driga, Photon physics in ALICE 24

Calorimeter performance in HIC Jubatech

EMCAL enters the stage

Pi0 peak in the most central collisions.

30.05-1.06.2011 Olga Driga, Photon physics in ALICE 25

Calorimeter PbPb performance **Jbatech**

•Uncorrected spectra of reconstructed π^0 s in different centralities normalized by number of PbPb collisions in a given centrality.

• Efficiency calculation is a challenging task, as it drops dramatically in the high detector occupancy environment.

 \bullet Uncorrected π^0 spectra give us an idea of the accessible range for R $_{\rm aa}$ 1< p <20 GeV

Direct photons and π^0 R_{AA}

γ inclusive γ thermal γ prompt

-Hard partons lose energy in the hot medium. -π^ο R_{_{AA} suppression at high p_τ.}

ubatech

prompt+thermal=direct

 π^0 R_{AA} with conversions

ubatech

Predicted rates for direct photons

•The first year of LHC with $pp@7$ TeV delivered 10 nb⁻¹ to ALICE. \bullet Expected $\bm{{\mathsf{p}}}_{{\mathsf{T}}}$ ranges for direct photon spectra are

- γ in PHOS p_T<8 GeV/c
- γ in EMCAL p_T<12 GeV/c

• Rates were calculated using INCNLO[1] program (pQCD NLO).

0)

ubatech

Direct photons

First attempt to measure direct photons in ALICE.

Photon-hadron correlations pp events at $\sqrt{s_{NN}}$ = 7 TeV

 \leftarrow \smile \blacktriangleright aて $\bm{\Theta}$ ∆てつこう こうきょう ていしゃ こうきょう ਠ
2 t**N**

 $\overline{}$

ALICE performance in pp already illustrates near- and away- side peaks.

Summary

- ALICE is well equipped by photon detectors: PHOS and EMCAL
- ALICE will measure direct photon, neutral meson spectra, γ -hadron and γ -jet correlations, jet fragmentation functions.
- The first year LHC run with pp@7 TeV has brought results on $\pi^{\scriptscriptstyle 0}$ spectrum at p_τ<25 GeV/c, η meson spectrum at p_τ<20 GeV/c, η to $\pi^{\rm o}$ ratio at p_{τ} <20 GeV/c.
- In a first year heavy-ion run PbPb@2.76 ATeV at LHC calorimeters can measure $\pi^{\rm o}$ spectrum and ${\sf R}_{_{\sf AA}}$ up to ${\sf p}_{_{\sf T}}$ <20 GeV/c depending on centrality.
- Azimuthal anisotropy v_{2}^{\prime} of π^{0} production was measured in ALICE.
- π^0 R_{AA} observed with conversion method show strong suppression at high p $_{_{\rm T}}$.

Thank you for attention!

Backup

Physics observables

Thermal photons

F.Arleo et al., arXiv:hep-ph/0311131

- Thermal photon from hadron gas contribute at low p_t > 2 GeV.
- **•Prompt photons contribute at** p_t **>3 GeV.**
- •Thermal photons from QGP radiation (up to 10% of inclusive photons) contribute at p_t > 10 GeV.
- •Thermal photons have large theoretical uncertainties.

Thermal photons

ubatech $ω/π⁰$ ratio: world data compilation

PHENIX, PRC 75, 051902(R) (2007)

What is expected at LHC scale?

ALICE

ALICE calorimeters

PHOS

- **Active element**: crystal of lead tungstate 2.2× 2.2× 18 $cm³$.
- **Geometry 2010**: 3 modules 64× 56 crystals each; distance from IP to active surface: 460 cm
- **Aperture**: $|\eta|$ <0.13, $\Delta \varphi = 60^{\circ}$
- **Energy range**: 0<E<100 GeV
- **Material budget** from IP to PHOS: 0.2 X_{0} .
- **Energy resolution**:

EMCAL

- **Active element: tower of 77** layers $(1.4$ mm lead $+1.7$ mm scintillator) $6\times 6\times 25$ cm³.
	- **Geo 2010**: 4 super modules 24× 48 towers each; distance from IP to active surface: 430 cm
	- **Aperture**: $|\eta|$ <0.7, $\Delta \varphi = 40^{\circ}$ $(2010); \Delta \varphi = 100^{\circ} (2011).$
- **Energy range**: 0<E<250 GeV
- **Material budget** from IP to $EMCAL: 0.5X₀$ (2010), 0.5-0.8 $X₀$ (2011)
- **Energy resolution**:

30.05-1.06.2011 Olga Driga, Photon physics in ALICE 44

Expected event rates in ALICE PHOS in pp

The first year of LHC with $pp@7$ TeV delivered 10 nb⁻¹ to ALICE. Expected p_{T} ranges for spectra in PHOS:

 $\bullet\pi^{\rm o}$: p_т<25 GeV/c

- \cdot η: p_τ<20 GeV/c
- •γ : p_τ <8 GeV/c

Cross-sections were calculated by INCNLO[1] for π^0 and direct photons and by Pythia 6 for η. [1] P. Aurenche, et al., Eur. Phys. J. C 13,347 (2000)

Expected event rates in ALICE EMCAL in pp

 $p p \to \pi^o\ X$, $\pi^o\ \to \gamma\gamma$ $p p \to \eta\ X$, $\eta\ \to \gamma\gamma$ $p p \to \gamma_{\text{\tiny direct}}$

 $pp \rightarrow \eta X$, $\eta \rightarrow \gamma \gamma$

 $pp \rightarrow \gamma_{direct} X$

In december 2010 EMCAL was fully installed, $\Delta \varphi = 100^{\circ}$ Expected p_{τ} ranges for spectra in EMCAL at L=10 nb⁻¹

- $\bullet\pi^{\rm o}$: p_т<25 GeV/c
- •η: p_{τ} <25 GeV/c
- •γ : p_{τ} <12 GeV/c

Cross-sections were calculated by INCNLO[1] for π^0 and direct photons and by Pythia 6 for η. [1] P. Aurenche, et al., Eur. Phys. J. C 13,347 (2000)

Event selection

Minimum bias trigger:

•Minimum bias event is selected by the coincidence of the bunch crossing signal and the condition:

SPD|V0A|V0C

●Not a beam-gas event type calculated offline by V0A or V0C •Efficiency of selecting inelastic pp events is \sim 90%.

Tsallis fit parameters

Jubatech Jet tagging by prompt photons

30.05-1.06.2011 Olga Driga, Photon physics in ALICE 51

Direct γ–recoil hadron suppression

30.05-1.06.2011 Olga Driga, Photon physics in ALICE 52

Trigger L0 in calorimeters

ubatech

ubatech Methods of photon measurements

