J/ψ production measurements in ALICE

High- p_T Probes of High-Density QCD at the LHC

May 30th - June 1st, 2011 École Polytechnique, Palaiseau

Cynthia Hadjidakis

- Physics motivations
- Inclusive J/ ψ measurements at $\sqrt{s} = 7$ and 2.76 TeV in p-p collisions

Total and differential cross sections

Multiplicity dependence at $\sqrt{s} = 7$ TeV

Ongoing analyses at $\sqrt{s} = 7$ TeV: polarization and prompt J/ ψ extraction at midrapidity

• Inclusive J/ ψ measurements at $\sqrt{s_{NN}} = 2.76$ TeV in Pb-Pb collisions

 $R_{AA} \mbox{ and } R_{CP}$

Ongoing analysis: exclusive J/ψ in ultra-peripheral collisions

Physics motivations

Quarkonium production as a probe of deconfinement

Suppression scenario

Debye screening in deconfined matter \rightarrow quarkonium family suppression sequency

T. Matsui, H. Satz, Phys. Lett. B 178 (1986) 416

 \rightarrow quarkonium production in heavy ion collisions is a QGP thermometer

Regeneration scenario

Large amount of ccbar pairs in hot nuclear matter $\rightarrow J/\psi$ production in A-A from ccbar recombination *B. Svetistky, PRD34, 2484 (1987) P. Braun-Munzinger and J. Stachel, Phys.Lett.B490:196-202,2000 R. L. Thews et al., Phys. Rev. C 63 (2001)*

If suppression and regeneration

Y', Y" ~ unaffected, increase of J/Ψ yield

Energy Density

Inclusive J/ ψ measurements

SPS and RHIC measurements

Puzzling results from SPS and RHIC

Similar suppression at SPS and RHIC Different suppression in central and forward rapidity at RHIC

Cold nuclear matter effects (absorption, initial state as shadowing / saturation, ...) measurements is required to estimate precisely the hot nuclear effect leading to the J/ψ suppression.

New energy regime at LHC

Heavy flavour are produced abundantly

 J/ψ and Y family can be studied with large statistics

Open heavy flavour can be used to normalize the quarkonium production

Cold nuclear matter effect will be studied in p-Pb collisions

\rightarrow Hot nuclear matter effects on quarkonia production can be precisely measured at the LHC

Quarkonia measurements in ALICE

J/ ψ measurements in p-p collisions at $\sqrt{s} = 2.76$ and 7 TeV

p-p collisions: event and track selection

Triggers

Minimum bias $-3.7 < \eta < 5.1$ V0A || V0C || Silicon Pixel Detector Muon -4<η<-2.5

Min bias && muon trigger

Event selection

V0 timing, Pixel cuts to reject beam-gas interaction

Run selection based on the stability of the detector performances

Track selection

electrons tracking with ITS and

ck selection	28.3 0	0.4 1 2 3	4 5 6 7 8 910 20 p (GeV/c)
ectrons	ALI-PUB-12	5	
tracking with ITS and TPC $ z_{vertex} < 10 \text{ cm}$ at least one hit in Pixel	\sqrt{s} (TeV)	electron L _{int} (nb ⁻¹)	muon L _{int} (nb ⁻¹)
$ \eta < 0.9$ p _T >1 GeV/c	2.76	1.1	20
electron PID based on TPC dE/dx	7	3.9	16

muons

1 muon trigger matching

at least one interaction vertex in Pixel

 $-4 < \eta < -2.5$

 $17.6 < R_{abs} < 89$ cm (radial track position at the end of the absorber)

Signal extraction

ALICE coll., arXiv:1105.0380 (2011)

 $J/\psi \rightarrow e^+ e^- @ 7 \text{ TeV}$

Like sign normalized to unlike sign Bin counting in M_{ee} =[2.92;3.16] GeV/c²

 $J/\psi \to \mu^+ \ \mu^- @~7 \ TeV$

Fit of the invariant mass distribution Crystal Ball shape for the signal $(J/\psi \text{ and } \psi')$ ψ' parameters bound to the J/ψ Double exponential for the background

Systematics uncertainties ~ 8.5% ($e^+ e^-$) and 6-7.5% ($\mu^+ \mu^-$) on signal extraction

Acceptance x efficiency correction

Detector simulation based on realistic (time-dependent) detector conditions

Monte Carlo generator

p_T-dependence from CDF extrapolation and y-dependence from CEM model @ 2.76 TeV: p_T and y interpolated from data (PHENIX, CDF, LHC)

F. Bossu et al., arXiv:1103.2394

Large uncertainties from unknown polarization quoted separately

Normalization and integrated cross section

Van der Meer scan

Beam size determination and absolute cross section for Minimum Bias events

Ken Oyama Quark Matter 2011

7 TeV $\sigma_{MB} = 62.3 \pm 4.3$ (syst) mb 2.76 TeV $\sigma_{MB} = 54.2 \pm 3.8$ (syst) mb

Normalization

$$J/\psi \to e^+ e^- \qquad \qquad J/\psi \to \mu^+ \mu^-$$

$$\sigma_{J/\psi} = \frac{N_{J/\psi}^{cor}}{BR(J/\psi \to \ell^+ \ell^-)} \times \frac{\sigma_{MB}}{N_{MB}} \qquad \qquad \sigma_{J/\psi} = \frac{N_{J/\psi}^{cor} \cdot \mu - MB}{BR(J/\psi \to \ell^+ \ell^-)} \times \frac{\sigma_{MB}}{N_{MB}} \times N_{\mu}^{MB} / N_{\mu}^{\mu - MB}$$

Systematic uncertainties ~ 7% ($e^+ e^-$) and 7.6% ($\mu^+ \mu^-$) on normalisation

Integrated cross section (a) 7 TeV

ALICE coll., arXiv:1105.0380 (2011)

 $\begin{aligned} \sigma_{J/\psi} \ (|y| < 0.9) \ &= 10.7 \pm 1.2 \ (stat) \pm 1.7 \ (syst) + 1.6 \ (\lambda_{HE} = +1) \ -2.3 \ (\lambda_{HE} = -1) \ \mu b \\ \sigma_{J/\psi} \ (2.5 < y < 4) \ &= 6.31 \pm 0.25 \ (stat) \pm 0.72 \ (syst) + 0.95 \ (\lambda_{CS} = +1) \ -1.96 \ (\lambda_{CS} = -1) \ \mu b \end{aligned}$

Integrated cross section (a) 2.76 TeVQuark Matter 2011 $\sigma_{J/\psi}$ (|y| < 0.9) = 6.44 ± 1.42 (stat) ± 0.88 (syst) ± 0.52 (lumi) + 0.64 (λ_{HE} =+1) -1.42 (λ_{HE} =-1) µb $\sigma_{J/\psi}$ (2.5<y<4) = 3.46 ± 0.13 (stat) ± 0.32 (syst) ± 0.28 (lumi) + 0.55 (λ_{CS} =+1) -1.11 (λ_{CS} =-1) µb

→ baseline for Pb-Pb measurements!

y and p_T dependent cross section

Broad y coverage down to $p_T=0 \rightarrow$ unique to ALICE

Model comparison

ALI-PREL-1752

NRQCD fits to World data (included CDF and LHC @ 7 TeV) for inclusive J/ψ reproduces well the p_T dependence for both energy and p_T > 3 GeV/c

Comparison with LHC experiments

ALICE Coll.. arXiv:1105.0380. ATLAS Coll. arXiv:1104.3038, CMS Coll, arXiv:1011.4193, LHCb Coll, arXiv:1103.0423

Bars = statistical and systematic (except lumi and polarization sources) Box = systematic from luminosity only Good agreement between ALICE and LHCb for 2.5 < y < 4

Energy dependence

J/ψ production vs charged multiplicity

Highest charged particle multiplicity ($dN_{ch}/d\eta_{max} \sim 30$) reached in pp @ 7 TeV is comparable with CuCu collisions (50-55%) @ 200 GeV \rightarrow collective effects in p-p collisions at high multiplicity at LHC?

Silicon Pixel Detector charged particle multiplicity measurement

J/ψ production vs charged multiplicity

Highest charged particle multiplicity ($dN_{ch}/d\eta_{max} \sim 30$) reached in pp @ 7 TeV is comparable with CuCu collisions (50-55%) @ 200 GeV \rightarrow collective effects in p-p collisions at high multiplicity at LHC?

Silicon Pixel Detector charged particle multiplicity measurement

Linear increases of J/ψ yield with charged particle multiplicity

 J/ψ yield increases different from high p_T muons (~80% heavy flavour decay)

Different behaviors between J/ψ and high p_T muon at high multiplicity? Understanding of multi-partonic interactions in p-p collisions needed to interpret these data.

Ongoing analyses

J/ψ polarization

Key observable to study the production mechanism

Determination ongoing for the full angular dependence of the J/ψ ($\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$)

Expected error on $\lambda_\theta \sim 0.15$ for 3<p_T<8 GeV/c

Ongoing analyses

J/w polarization

Key observable to study the production mechanism

Determination ongoing for the full angular dependence of the J/ ψ ($\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$)

Expected error on $\lambda_{\theta} \sim 0.15$ for 3<p_T<8 GeV/c

prompt J/\u03c6 determination at mid-rapidity

Impact parameter resolution excellent in the central barrel ($\sigma_{ro} < 75 \ \mu m$ for $p_T > 1 \ GeV/c$)

B decay contribution estimated from the pseudo proper decay length distribution

High statistics sample to be collected this year with electron trigger

Ongoing analyses

J/ψ polarization

Key observable to study the production mechanism

Determination ongoing for the full angular dependence of the J/ψ ($\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$)

Expected error on $\lambda_{\theta} \sim 0.15$ for 3<p_T<8 GeV/c

prompt J/ ψ determination at mid-rapidity

Impact parameter resolution excellent in the central barrel ($\sigma_{r\phi} < 75 \ \mu m$ for $p_T > 1 \ GeV/c$)

B decay contribution estimated from the pseudo proper decay length distribution

High statistics sample to be collected this year with electron trigger

Also with higher statistics (electron triggers): Y family measurements, in central barrel: J/ ψ -hadron correlations and radiative decay from higher charmonium state (χ_c and ψ ')

J/ψ measurements in Pb-Pb collisions

Pb-Pb collisions: event and track selection

Triggers

Minimum bias $-3.7 < \eta < 5.1$ V0A && V0C && Pixel

Event and track selection

Only differences with p-p collisions mentioned electrons

electron PID based on TPC dE/dx or TPC and TOF

muons

40-50%

50-60%

2000

10⁻¹

30-40%

20-30%

2 muons trigger matching

$$L_{int} = 2.7 \ \mu b^{-1}$$

Centrality determination Based on a Glauber fit of the V0 amplitude Events Pb-Pb at\s_{NN} = 2.76 TeV Electromagnetic interactions dominate for Data Glauber fit NBD x f N_{coll} + (1-f)N f=0.194, μ=29.003, κ=1.202 part 10² 10

electrons

centrality > 90%

2 bins [0-40] and [40-80]%

muons

4 bins used [0-10], [10-20], [20-40] and [40-80]%

VZERO Amplitude (a.u.)

LICE Performance

500

60-70%

1000

05/2011

5-10%

10²

0-20%

4000 6000 8000 10000 12000 14000 16000 18000 20000

Signal extraction

Different PID strategy (TPC alone, TPC+TOF), signal extraction techniques tested Main systematics from signal extraction and electron PID

Signal extraction

Event mixing technique

Fit of the inv. mass distribution Crystal Ball (with 1 or 2 tails) + 2 exponentials Shape fixed for the 4 centrality bins

 $J/\psi \rightarrow \mu^+ \mu^-$

Mixed pair inv. mass normalized to data in [1.5;2.5] GeV/c² and subtracted

Residual background estimated by a Crystal Ball+ exponential fit

For central collisions, S/B $\sim 0.1 \rightarrow$ main systematics from signal extraction

Studies on high multiplicity environment effect

 $J/\psi \to \mu^+ \ \mu^-$

Embedding

One simulated J/ ψ embedded into each real event to study a possible bias of the measurements with the centrality of the collision

No sizable evolution of the parameters with the centrality

Acceptance x efficiency

Acc x eff ~ 19 %

4% efficiency decrease in the most central collisions (similar efficiency loss estimated with data). Added in the systematics.

R_{AA} vs centrality

Almost flat centrality dependence !

RAA vs Npart at RHIC and LHC

In the most central collisions, larger suppression measured at RHIC for $p_T>0$! Role of regeneration?

CNM effect are expected to be larger at LHC Surprising results but p-Pb needed to conclude

R_{CP} vs centrality

$$Y^{i}_{J/\psi} = \frac{N^{i}_{J/\psi}}{B.R. \times AccEff \times N^{i}_{MB}}$$

$$R^{i}_{CP} = \frac{Y^{i}_{J/\psi} \times \langle T^{40-80\%}_{AA} \rangle}{\langle T^{i}_{AA} \rangle \times Y^{40-80\%}_{J/\psi}}$$

 R_{CP} normalized to the centrality bin 40-80%

Statistical uncertainty of the reference propagated to the ratio Systematic uncertainties of signal extraction and T_{AA} calculated considering the correlations \rightarrow common systematic uncertainties vanish

R_{CP} vs centrality

$$Y^{i}_{J/\psi} = \frac{N^{i}_{J/\psi}}{B.R. \times AccEff \times N^{i}_{MB}}$$

$$R^{i}_{CP} = \frac{Y^{i}_{J/\psi} \times \langle T^{40-80\%}_{AA} \rangle}{\langle T^{i}_{AA} \rangle \times Y^{40-80\%}_{J/\psi}}$$

ALICE:

- 2.5<y<4
- $p_T > 0$ ATLAS:

• |y|<2.5

• 80% of J/ ψ with $p_T > 6.5 \text{ GeV/c}$

R_{CP} larger for ALICE than for ATLAS in the most central collisions... ... but different kinematical region

Similar suppression as in ATLAS measured at CMS

 R_{CP} normalized to the centrality bin 40-80%

Statistical uncertainty of the reference propagated to the ratio Systematic uncertainties of signal extraction and T_{AA} calculated considering the correlations \rightarrow common systematic uncertainties vanish

R_{CP} vs centrality

$$Y^{i}_{J/\psi} = \frac{N^{i}_{J/\psi}}{B.R. \times AccEff \times N^{i}_{MB}}$$

$$R^{i}_{CP} = \frac{Y^{i}_{J/\psi} \times \langle T^{40-80\%}_{AA} \rangle}{\langle T^{i}_{AA} \rangle \times Y^{40-80\%}_{J/\psi}}$$

ALICE:

• $p_T > 0$ ATLAS:

• |y|<2.5

• 80% of J/ ψ with $p_T > 6.5$ GeV/c

R_{CP} larger for ALICE than for ATLAS in the most central collisions... ... but different kinematical region

Similar suppression as in ATLAS measured at CMS

 R_{CP} normalized to the centrality bin 40-80%

Statistical uncertainty of the reference propagated to the ratio Systematic uncertainties of signal extraction and T_{AA} calculated considering the correlations \rightarrow common systematic uncertainties vanish

 $J/\psi \to e^+ \, e^-$ challenging analysis but crucial for y-dependent measurement

Absolute cross section measurement ongoing

Conclusion

Inclusive J/ ψ measurements at $\sqrt{s} = 7$ and 2.76 TeV in p-p collisions

Total and differential cross sections for a broad y range and down to p_T=0
Constraints for the models
Cross section @ 2.76 TeV is our reference for Pb-Pb
Yield measurement in high multiplicity events
Promising analyses: polarization and prompt J/ψ extraction at mid-rapidity

Inclusive J/ ψ production at $\sqrt{s_{NN}} = 2.76$ TeV in Pb-Pb collisions

Surprising results for inclusive J/ψ R_{AA} and R_{CP}

Almost flat centrality dependence

Ratio larger than at RHIC for most central collisions

Cold nuclear matter effects unknown at LHC \rightarrow p-Pb needed to estimate hot nuclear matter effect!

Soon: exclusive J/ψ absolute cross section in ultra-peripheral collisions

Back-up slides

p-p data: systematic uncertainties

Source of systematic uncertainty	J/ ψ→μ+μ-	J/ ψ →e⁺e ⁻	
signal extraction	6 %	8.5 %	
Acceptance inputs	2.5%	1 %	
Trigger efficiency	4%	-	
Reconstruction efficiency	4%	11 %	
Trigger enhancement	3%	-	
Luminosity	8%	8 %	
Total systematic uncertainty	12.1 %	16.1%	
Polarization	$\lambda = -1 \lambda = +1$	$\lambda = -1 \lambda = +1$	
Collins-Soper	+32 -16 %	+19 -13 %	
Helicity	+24 -12 %	+21 -15 %	

Single muon yield vs multiplicity: data vs PYTHIA

Very nice data description by PYTHIA simulation

Pile-up in high multiplicity events in p-p collisions

Pb-Pb data: systematic uncertainties

$J/\psi \to \mu^+ \ \mu^-$

centrality	0-10%	10-20%	20-40%	40-80%	Common
$N_{J/\psi}$	0,19	0,14	0,17	0,14	-
$N_{J/\psi}$ / $N_{J/\psi}^{40-80\%}$	0,12	0,08	0,07	-	-
Acceptance	-	-	-	-	0,03
Eff. Tracker	0,04	0,02	0,01	0	0,05
Eff. Trigger	-	-	-	-	0,04
Reco.	-	-	-	-	0,02
B.R.	-	-	-	-	0,01
X-section	-	-	-	-	0,13
<t<sub>AA></t<sub>	0,04	0,04	0,04	0,06	-
$< T_{AA} >^{i}$ / $< T_{AA} >^{40-80\%}$	0,06	0,05	0,04	-	-
Total for R _{AA}	0,2	0,15	0,17	0,15	0,15
Total for R _{CP}	0,14	0,1	0,08	-	-

 $J/\psi \rightarrow e^+ e^-$

Systematics = 22% from electron PID and signal extraction

ALICE detectors rapidity coverage

