Quarkonia and Vector Boson production in CMS

Mihee Jo Korea University

for the CMS collaboration

High-pT Probes of High-Density QCD at the LHC

Outline

- Quarkonia
 - Introduction
 - J/ ψ and Υ production at pp \sqrt{s} = 7 TeV
 - J/ ψ and Υ production at PbPb $\sqrt{s_{NN}}$ = 2.76 TeV

- Vector Boson
 - Introduction
 - Z production at pp \sqrt{s} = 7 TeV
 - − Z → $\mu^+\mu^-$ production at PbPb $\sqrt{s_{NN}}$ = 2.76 TeV
 - W^\pm and $Z \to e^+e^-$ production

Quarkonia production

Quarkonia in heavy ion collisions

- Good candidates to probe the QGP in heavy ion collisions
 - Large masses and dominantly produced at the early stage of the collision by hard-scattering of gluons
 - Characterized by its binding energy and radius

	J/ψ	χς	ψ (2s)	Ύ (1s)	Ύ (2s)	Ύ (3s)
M (GeV/c ²)	3.10	3.53	3.69	9.46	10.0	10.36
ΔE (GeV)	0.64	0.20	0.05	1.10	0.54	0.20
r _o (fm)	0.25	0.36	0.45	0.28	0.56	0.78

- Debye screening radius decreases with increasing temperature
 → sequential melting
- Thermometer for the temperature reaches in the HI collisions

Compact Muon Solenoid

High-pT Probes of High-Density QCD at the LHC

Muon reconstruction in CMS

- Great muon identification & triggering (Muon system)
- High mass/momentum resolution (Tracker)

Dimuons in pp at $\sqrt{s} = 7$ TeV

J/ψ in pp at $\sqrt{s} = 7$ TeV

High-pT Probes of High-Density QCD at the LHC

J/ψ in pp at $\sqrt{s} = 7$ TeV

- Prompt J/ ψ production not well reproduced
- Models describe non-prompt J/ ψ production better

Υ in pp at $\sqrt{s} = 7$ TeV

- Separation of the 3 Υ states with good mass resolution
- Pythia (LO/CSM+COM) agrees in shape, not in normalization
 - Overestimated by about a factor 2

Dimuons in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

High-pT Probes of High-Density QCD at the LHC

J/ ψ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

- Separate prompt & non-prompt J/ψ
- HI tracking algorithm uses vertex constraint
 - Smaller efficiency for non-prompt than for prompt J/ψ
 - Effect increases with p_T
- Efficiencies from Monte Carlo
 - Simulate signal with PYTHIA
 - Embed signal in min-bias event simulated with HYDJET
 - Validated MC by comparing efficiencies measured with "Tag & Probe" in MC and data

Prompt vs. non-prompt J/ ψ in PbPb

First time that prompt and non-prompt J/ ψ have been separated in heavy ion collisions !

Reference: J/ ψ in pp at $\sqrt{s} = 2.76$ TeV

- pp data reconstructed with heavy ion algorithm
- Identical cuts used as in heavy ion analysis

Prompt J/ ψ R_{AA} vs. p_T and y

- Factor 3 suppression for $p_T > 6.5$ GeV/c and at y = 0
- Trend to less suppression at forward rapidity

Prompt J/ ψ R_{AA} vs. p_T and y : Comparison

- **CMS** $p_{T}^{J/\psi} > 6.5 \text{ GeV/c}$
- **STAR** $p_T^{J/\psi} < 8 \text{ GeV/c}$
- **PHENIX** lower p_T
- High $p_T J/\psi$'s tendency to survive at RHIC (and SPS) is not seen at the LHC
- CMS shows opposite trend than PHENIX but different p_{τ}
- Increasing R_{AA} going towards ALICE y range
 - Watch out for anti-shadowing

ALICE low $p_T^{J/\psi}$ **CMS** $p_{T} > 3 \text{ GeV/c}$ $R_{AA} = 0.39 \pm 0.06 \pm 0.03$ $R_{AA} = 0.49 \pm 0.03 \pm 0.11$ $p_T=10$ up to $x_1 \sim 0.02(x_2 \sim 5.10^{-4})$ $p_T=0$ up to $x_1 \sim 0.06(x_2 \sim 2.10^{-5})$

Prompt J/ ψ R_{AA} vs. N_{part}

Stronger suppression seen in CMS than at STAR

- 0-10% suppressed by factor 5
- 50-100% suppressed by factor ~1.6
 - **CMS** $p_T^{J/\psi} > 6.5 \text{ GeV/c}$
 - **STAR** $5 < p_T^{J/\psi} < 8 \text{ GeV/c}$

Non-prompt $J/\psi R_{AA}$

Suppression of non-prompt J/ ψ observed in min-bias and central PbPb at $\sqrt{s_{NN}} = 2.76 TeV$

- First indications of high- p_T b-quark quenching !

$\Upsilon(nS)$ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

- Signal extraction
 - Resolution fixed from MC
 - Peak separation fixed to PDG
- Efficiencies from Monte Carlo
 - Same method and validation process as J/ψ

CMS

$\Upsilon(1S) R_{AA}$ vs. p_T and y

- Does high p_T not suppressed?
- No obvious y dependence
- Need more data next year

$\Upsilon(1S) R_{AA} vs. N_{part}$

- STAR Υ(1S+2S+3S) but CMS Υ(1S)
- 0-20% suppressed by factor ~1.6

Υ (2S+3S) suppression

- $\Upsilon(2S+3S)$ production relative to $\Upsilon(1S)$ in pp and PbPb
- Simultaneous fit to PbPb and pp data at 2.76 TeV $\Upsilon(2S + 3S)/\Upsilon(1S)|_{PbPb} = 0.31^{+0.19}_{-0.15} \pm 0.03$ arXiv: 1105.4894 $\overline{\Upsilon(2S+3S)/\Upsilon(1S)}|_{pp}$ Submitted to PRL Events / (0.14 GeV/c² CMS Preliminary Events / (0.14 GeV/c² data **CMS** Preliminary data 60 PbPb $\sqrt{s_{NN}}$ = 2.76 TeV PbPb fit pp \sqrt{s} = 2.76 TeV 70 pp shape 0-100%, 0.0 < |y| < 2.40.0 < |y| < 2.4 $p_{-}^{\mu} > 4 \text{ GeV/c}$ 0 < p₊ < 20 GeV/c $60 - p_{\tau}^{\mu} > 4 \text{ GeV/c}$ 0 < p_ < 20 GeV/c $L_{int} = 7.28 \,\mu b^{-1}$ $L_{int} = 225 \text{ nb}^{-1}$ 50 $\sigma = 92 \text{ MeV/c}^2$ (fixed to MC) $\sigma = 92 \text{ MeV/c}^2$ (fixed to MC) 40 30

High-pT Probes of High-Density QCD at the LHC

Υ (2S+3S) suppression

- Systematic uncertainty : 9.1%
- Statistical uncertainty : 55%
- Null hypothesis testing
 - p-value : 1%
 - Significance of suppression is 2.4σ
- Relative suppression of $\Upsilon(2S+3S)$ vs. $\Upsilon(1S)$
 - Observation consistent with melting of the excited states only?
- What about cold nuclear matter effects?
 - Smaller σ_{abs} than at lower energy and for J/ ψ $\,$ R. Vogt, arXiv : 1003.3497 $\,$
 - Shadowing cancelling in the $\Upsilon(2S+3S)/\Upsilon(1S)$ ratio
 - pA run?

arXiv: 1105.4894 ,Submitted to PRL

Quarkonia production summary

- Prompt J/ψ significantly suppressed
- First non-prompt J/ψ observation in heavy ion collision
 - b-quark energy loss
- Y(2S+3S) excited states suppressed
 - Consistent with $\Upsilon(1S)$ suppression

Sequential melting accessible with CMS resolution

Z, W boson production

Electro-weak probes in CMS

- Electro-weak probes accessible for the first time in heavy ion collisions
- Z and W bosons and leptons not affected by strongly interacting medium
- The Z to dilepton channel can be used as a standard candle
 - Precise measurement of Z production can help constrain cold nuclear effects
 - By exploiting the muon reconstruction capabilities of CMS the dimuon channel provides a clean measurement
- Z's can be used to calibrate parton traversing the medium via Z + jet events
 - Gives direct access to q² at tree-level

$Z \rightarrow \mu^+ \mu^-$ in CMS

CMS Experiment at LHC, CERN Data recorded: Tue Nov 9 23:51:56 2010 CEST Run/Event: 150590 / 776435 Lumi section: 183

High-pT Probes of High-Density QCD at the LHC

Z in pp at $\sqrt{s} = 7$ TeV

Superb agreement of NNLO calculations with measurement of Z in dilepton channel

$Z \rightarrow \mu^+\mu^-$ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

PRL 106, 212301 (2011)

- The Z mass peak from PbPb : in agreement with pp data
- Very low background : only 1 like-sign pair

$Z \rightarrow \mu^+ \mu^-$ yield vs. p_T and y

- Data and theoretical prediction agree within uncertainties
 - Theory curves scaled by nuclear geometry

$$T_{AB}(MinBias) = \frac{A^2}{\sigma_{PbPb}}$$

$Z \rightarrow \mu^+\mu^-$ normalized yield vs. N_{part}

T_{AB} : Nuclear overlap function

The number of elementary nucleon-nucleon binary collisions divided by the elementary NN cross section

$$\frac{1}{T_{AB}}\frac{dN}{dy} = R_{AA}\frac{d\sigma_{pp}}{dy}$$
• Assuming $\frac{d\sigma_{pp}}{dy} = 59.6 \text{ pb} (|y| < 2)$

$$R_{AA} = \frac{1}{T_{AB}}\frac{dN_{AA}}{\sigma_{pp}} = 1.00 \pm 0.16 \pm 0.14$$

- Systematic uncertainty : 14%
- Statistical uncertainty : 16%
- Good agreement between NLO calculations and CMS results!

$W^{\pm} \rightarrow \mu^{\pm} \nu \text{ and } Z \rightarrow e^+e^-$

- First observation of W bosons in HI collisions!
- Signature for W candidates
 - High p_T isolated muon (> 20 GeV/c)
 - High p_T neutrino
- Missing transverse energy
 - Tracks $p_T > 2 \text{ GeV/c}$

 PbPb peak fitted with Breit-Weigner and exponential on one side

Electro-weak probes summary

- The Z boson has been observed in heavy ion collisions
 - No modification
 - The yield shows no centrality dependence
- Ongoing analysis
 - First observation of W bosons in heavy ion collisions
 - First observation of $Z \rightarrow e^+e^-$ in heavy ion collisions

A complex production

- J/ψ production in pp
 - Production of $q\bar{q}$ pair (perturbative)
 - Evolution of $q\bar{q}$ pair into a bound state (non perturbative)
- Different theoretical models of evolution
 - Color singlet model, color evaporation model, NRQCD, FONLL
- Production mechanism not completely understood
- Many effects altering production in nuclear reactions
 - In pA, cold nuclear matter (CNM) effects
 - Initial state: shadowing, parton energy loss
 - Final state: $c\bar{c}$ dissociation in the medium, final energy loss
 - In AA, hot and dense medium effects

Tag & Probe

- Tag:
 - High quality muon
- Probe:
 - Track in the muon station
- Passing Probe:
 - Probe that is also reconstructed as global muon (i.e. with a track in the Si-tracker)
- Reconstruct J/psi peak in passing probe-tag pairs and in failing probe-tag pairs
- Simultaneous fit to passing and failing probes allows us to measure the efficiency of the inner track reconstruction

Separating non-prompt J/ψ

• Simultaneous 2D $(l_{J/\psi}, m_{\mu\mu})$ unbinned maximum likelihood fit is done to separate J/ ψ originating in B hadron decays. $\ln f = \sum_{k=1}^{N} \ln F(l_{\mu}, m_{\mu})$

$$F(l_{J/\psi}, m_{\mu\mu}) = f_{sig}F_{sig}(l_{J/\psi})M_{sig}(m_{\mu\mu}) + (1 - f_{sig})F_{bkg}(l_{J/\psi})M_{bkg}(m_{\mu\mu})$$

$$F_{sig}(l_{J/\psi}) = f_B F_B(l_{J/\psi}) + (1 - f_B) F_{Prompt}(l_{J/\psi})$$
$$F_B(l_{J/\psi}) = R(l'_{J/\psi} - l_{J/\psi}) \otimes X_{MC}(l'_{J/\psi})$$

Resolution function $R(l_{J/\psi})$: sum of 4 Gaussian

 $F_{bkg}(l_{J/\psi})$: sum of 3 decay function (for long-lived components) convoluted with $X_{MC}(l_{J/\psi})$

- 1) Fit to $m_{\mu\mu}$ to get inclusive J/ ψ yield
- 2) Fit to $l_{J/\psi}$ in prompt J/ ψ MC sample to get an initial estimation of each parameters of $R(l_{J/\psi})$
- 3) Fit to $l_{J/\psi}$ of sidebands of $m_{\mu\mu}$ with $F_{bkg}(l_{J/\psi})$
- 4) 2D simultaneous fit with $F(l_{J/\psi}, m_{\mu\mu})$

pp Comparison

Same pp reconstruction, including low $p_T J/\psi$ Agreement of the $\Upsilon(2S+3S)/\Upsilon(1S)$ ratio

• pp 2.76 TeV

High-pT Probes of High-Density QCD at the LHC

p-value

Could background fluctuation produce a result as extreme as observed in data?

- Generate pseudo-experiments following the *null-hypothesis* (i.e. no suppression)
- Fit pseudo-data samples with nominal fit
- Count fraction of occurrences for which the ratio (taken as test statistic) is same or lower than observed:
 - p-value: 0.9%
 - 2.4 σ (1-sided Gaussian test)

Large fraction of Y(1S) come from excited states

- ~50% feed-down from χ_b for $p_T^{Y} > 8$ GeV/c CDF: PRL84 (2000) 2094

W bosons in PbPb and pp

