

Quantum integrable systems. Quantitative methods in biology Systèmes intégrables quantiques. Méthodes quantitatives en biologie

Giovanni Feverati

Soutenance d'habilitation à diriger les recherches Auditorium, LAPTH, 13 Décembre 2010, 14H00

Membres du jury:

Jean Avan (LPTM, CNRS/Université de Cergy-Pontoise) Michele Caselle (Dip. fisica teorica, Università di Torino) Luc Frappat (LAPTH, Université de Savoie) Francesco Ravanini (Dip. fisica, Università di Bologna) Jean-Marc Victor (LPTMC, CNRS/Université de Paris VI) Laurent Vuillon (LAMA, Université de Savoie)

Giovanni Feverati

Thesis (2000): Finite volume spectrum of sine-Gordon model and its restrictions. Dipartimento di Fisica, Università di Bologna Supervisor: Francesco Ravanini

Post-docs

1999-2000 Venezia, CNR, Physical oceanography, Luigi Cavaleri

2000-2003 Melbourne, Dept. Mathematics, Paul Pearce

2003-2005 Trieste, SISSA, math. physics, Giuseppe Mussardo

2005- Annecy, LAPTH, math. physics, Luc Frappat, Eric Ragoucy

-2010 Annecy, LAPTH, biophysics, Claire Lesieur, Laurent Vuillon, Paul Sorba

Research subjects

Quantum integrable systems

- sine-Gordon on a cylinder (1997-2000)
- Klümper-Batchelor-Pearce-Destri-de Vega equation NLIE (1997-1999, 2005-2007)
- thermodynamics Bethe ansatz (1995, 2000-2005, 2008)
- integrable models with boundaries (2000-2005)
- truncated conformal space approach (1997-2000, 2005)
- lattice-conformal dictionary (2005)
- physical combinatorics (2002, 2008)
- lattice models and continuum limits
- Hubbard model and AdS/CFT (2005-2008)

Theoretical biophysics

- Darwinian evolution with Turing machines (2006-)
- protein assembly: Gemini graphs (2007-), diffusional association (2010)

Geographical map

QFT: factorized scattering CFT: Virasoro algebra Lattice: transfer matrix

continuum limit lattice-conformal dictionary

XXZ model

$$H_{XXZ} = -\sum_{i=1}^{N-1} \left[\sigma_i^1 \sigma_{i+1}^1 + \sigma_i^2 \sigma_{i+1}^2 + \Delta (\sigma_i^3 \sigma_{i+1}^3 - 1) \right], \qquad \Delta = \cos \gamma$$

ground state: ferromagnetic (= all spins parallels) if $\Delta \ge 1$, antiferromagnetic if $\Delta < 1$, gapless in the TD limit if $-1 \le \Delta \le 1$

1931: (coordinate) Bethe ansatz

Bethe equations
$$\left(\frac{\sinh\frac{\gamma}{\pi}(\theta_j+i\frac{\pi}{2})}{\sinh\frac{\gamma}{\pi}(\theta_j-i\frac{\pi}{2})}\right)^N = -\prod_{k=1}^M \frac{\sinh\frac{\gamma}{\pi}(\theta_j-\theta_k+i\pi)}{\sinh\frac{\gamma}{\pi}(\theta_j-\theta_k-i\pi)}$$

spectrum
$$E = -2\sum_{j=1}^{M} \frac{\sin^2 \gamma}{\sinh \frac{\gamma}{\pi}(\theta_j + i\pi) \sinh \frac{\gamma}{\pi}(\theta_j - i\pi)} = \sum_{j=1}^{M} f_E(\theta_j) \qquad 0 \le M \le \frac{N}{2}$$

 θ_j (Bethe roots): *quasiparticles*

completeness of spectrum, $\theta_j \neq \theta_k$

Six-vertex model

The XXZ Hamiltonian comes from a transfer matrix

$$H_{XXZ} \propto \frac{d \log T(\theta)}{d\theta} \Big|_{\frac{i\pi}{2}} \quad \text{where} \quad \mathbf{T} = \prod_{A} R_{A \, 1} R_{A \, 2} \dots R_{A \, N}$$

and
$$R_{A \, i}(\theta) = \begin{pmatrix} \sinh \frac{\gamma}{\pi}(\theta + i\pi) \\ & \sinh \frac{\gamma}{\pi}\theta & i \sin \gamma \\ & i \sin \gamma & \sinh \frac{\gamma}{\pi}\theta \\ & & \sinh \frac{\gamma}{\pi}(\theta + i\pi) \end{pmatrix}$$

T describes the partition function of a classical two dimensional six vertex model

Yang-Baxter equation $R_{12}(\lambda - \mu)R_{13}(\lambda)R_{23}(\mu) = R_{23}(\mu)R_{13}(\lambda)R_{12}(\lambda - \mu)$

XXZ as a reference model

lattice conformal dictionary

NLIE: nonlinear integral equations

The Klümper-Batchelor-Pearce-Destri-de Vega NLIE equation *re-writes* the Bethe equations by changing the fundamental set of *quasiparticles*: roots/holes duality

Klümper, Batchelor, Pearce 1991 Destri-de Vega 1992

Feverati, Ravanini, Takács 1997-2000

G. Feverati, D. Fioravanti, P. Grinza, M. Rossi, 2006, 2007

scattering

take the log of Bethe equations:
$$Z(\theta_j) = 2\pi I_j$$
(*) I_j : quantum numbers $I_j = \begin{cases} half-integer & if N - M even \\ integer & if N - M odd \end{cases}$

counting function (XXX):
$$Z(x) = iN \ln \frac{\frac{i}{2} + x}{\frac{i}{2} - x} - \sum_{k=1}^{M} i \ln \frac{i + x - \theta_k}{i - x + \theta_k} \quad (\star \star)$$

volume

"hole" = real solution of (\star) not in $(\star\star)$

 $\theta_k \in \left\{ \begin{array}{c} \mathbb{R} \\ \mathbb{C} - \mathbb{R} \end{array} \right.$

Is there a state with many real roots (order of N)?

Antiferromagnetic state = Dirac sea of real roots; excitations above it: "holes", complex roots

$$\sum_{\text{real roots}} f(\theta_k) = \frac{1}{2\pi i} \int_C \frac{f(z)}{1 + e^{iZ(z)}} e^{iZ(z)} iZ'(z) \, dz - \sum_{\text{holes}} f(x_h)$$

Exchange the degrees of freedom "real root" and "hole"

XXX: unknown function Z(x) $Z(\theta_j) = 2\pi I_j$ $Z(x) = F(x) + \text{sources} + 2 \int_{-\infty}^{\infty} dy G(x - y) \operatorname{Im} \ln \left[1 + e^{iZ(y+i0)} \right]$ forcing term: $F(x) = N \arctan \sinh \pi x$; $G(x) = \int_{-\infty}^{\infty} \frac{dp}{2\pi} \frac{e^{ipx}}{1 + e^{|p|}}$ $E = 2N \ln 2 + \text{sources} + \int_{-\infty}^{\infty} dy \left(-\pi \frac{\sinh \pi y}{\cosh^2 \pi y} \right) \operatorname{Im} \ln \left[1 + e^{iZ(y+i0)} \right]$

roots/holes duality	before	after
	Bethe equations	equation for Z
sources (quasiparticles)	real roots + complex roots	holes + complex roots

- useful to describe excitations of the antiferromagnetic state
- large N (chain length) development (XXX, SO(6) spin chain)
- strong and weak coupling limits (Hubbard)
- IR limit (scattering theory) and UV limit (conformal limit), sine-Gordon
- numerical analysis

Plot of the counting function Z(x) for the four holes state $I = (-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2})$ of the XXX chain.

Plot of the subleading corrections for the four holes state $I = (-\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2})$ of the XXX spin chain: $E = 2 \ln 2N - 4\pi + \frac{\pi^2}{6N} + \Delta E$; $\Delta E = \frac{\pi^2}{6N} \left(\frac{c1}{\ln^2 N} + \dots\right)$

Difference of BDS and Hubbard energies (anomalous dimensions) at different sizes of the system and fixed g = 1.2 in a logarithmic scale.

Exponential damping: $|E_{BDS} - E_H| \propto e^{-a(g)N}$

Thermodynamic Bethe ansatz

Face models A_{ℓ} : classical 2 dim. models with interaction defined on a square

Fusion hierarchy: $D^0 \propto I$; $D^1 = D$; recursively $D^1 \rightarrow D^2 \rightarrow \dots D^{\ell-1}$; $D^{\ell} = 0$

Functional equations: $\tilde{d}^{q}(u + \lambda/2) \tilde{d}^{q}(u - \lambda/2) = \left[(1 + \tilde{d}^{r}(u))^{A_{qr}} \right]$

Al. Zamolodchikov Y-system for RSOS scattering theories (1991), $\tilde{d} = \exp(-\varepsilon) = Y$

Zeros of the transfer matrix eigenvalues

Thermodynamic Bethe ansatz equations

$$\log \hat{d}^{q}(x) = -4 \,\delta_{1,q} \,e^{-x} + \log \prod_{j=1}^{L-2} \prod_{k=1}^{m_{j}} \left[\tanh \frac{x - \hat{y}_{k}^{(j)}}{2} \right]^{A_{q,j}} \\ + \sum_{j=1}^{L-2} A_{q,j} \,\int_{-\infty}^{\infty} dy \,\frac{\log(1 + \hat{d}^{j}(x))}{2\pi \cosh(x - y)}, \qquad q = 1, \dots, \ell - 2$$

Quantization conditions

$$\hat{\Psi}^{q}(x) = 4\delta_{1,q} e^{-x} + i \sum_{r=1}^{L-2} A_{q,r} \sum_{k=1}^{m_{r}} \log \tanh\left(\frac{x - \hat{y}_{k}^{(r)}}{2} - i\frac{\pi}{4}\right)$$
$$- \sum_{r=1}^{L-2} A_{q,r} \int_{-\infty}^{\infty} dy \frac{\log(1 + \hat{d}^{r}(y))}{2\pi \sinh(x - y)}$$
$$\hat{\Psi}^{q}(\hat{y}_{k}^{(q)}) = \pi n_{k}^{(q)} = \pi [1 + 2(I_{k}^{(q)} + m_{q} - k)]$$

Continuum limit of the lattice model A_{ℓ} : integrable perturbation of a CFT $\mathcal{M}_{\ell,\ell+1}$ (unitary minimal model)

All excited states. If no sources (=zeros): ground state

Physical combinatorics: classification of the zeros of the transfer matrix eigenvalues

Continuum limit

 $-\frac{1}{2}\log D(N,0) = N\log \kappa_{\text{bulk}} + \frac{1}{2}\log \kappa_{\text{bound}} + \frac{\pi}{N}E + \text{higher order corrections in } \frac{1}{N}$

At the critical (conformal) point

$$E = -\frac{c_{\ell}}{24} + \frac{1}{4}m^{T}Cm + \sum_{q=1}^{\ell-2}\sum_{k=1}^{m_{q}}I_{k}^{(q)}; \quad \text{central charge } c_{\ell} = 1 - \frac{6}{\ell(\ell+1)}$$

 $A_{\ell} \longrightarrow \mathcal{M}_{\ell,\ell+1} = Virasoro minimal model$

A₃ Ising model

A₄ tricritical Ising

A₅ (related to) three states Potts

Feverati, Grinza, Pearce, Ravanini, Witte ... 2000-2005, 2009

Numerical solutions

Scaling energies for the boundary flow $\chi_{1,2} \rightarrow \chi_{1,1}$ of the tricritical Ising model.

Geometry: infinitely long strip.

At the two extremes: exact solutions (as above). Possible description as quasi-particles gaz (physical combinatorics)

Lattice-conformal dictionary

Where are the eigenstates?

Comparison of the eigenvalues of I_3 and I_5 from conformal field theory and from TBA in the vacuum sector of the tricritical Ising model. The left column contains the level degeneracy (I.d.) as indicated in the conformal character (conformal partition function): dq^l

Numerical evaluation but exact results

l.d.	lattice-conformal dictionary	<i>I</i> ₃ (CFT)	<i>I</i> ₃ (TBA)	I_5 (CFT)	<i>I</i> ₅ (TBA)
1	$() \longleftrightarrow 0\rangle$	0.0061979	0.0061979	-0.0028301	-0.0028301
$1q^{2}$	$(00) \longleftrightarrow L_{-2} 0\rangle$	4.2561979	4.2561979	8.1731074	8.1731074
$1q^{3}$	$(10) \longleftrightarrow L_{-3} 0\rangle$	19.131198	19.131197	104.14545	104.14545
$2q^4$	$(20) \longleftrightarrow 3(\frac{4+\sqrt{151}}{5}L_{-4} + 2L_{-2}^2) 0\rangle$	52.052045	52.052042	556.20159	556.20155
	(11) $\longleftrightarrow 3(\frac{4-\sqrt{151}}{5}L_{-4} + 2L_{-2}^2) 0\rangle$	22.560351	22.560348	108.29650	108.29648
$2q^{5}$	$(30) \longleftrightarrow (\frac{7+\sqrt{1345}}{2}L_{-5} + 20L_{-3}L_{-2}) 0\rangle$	110.13688	110.13687	1943.8246	1943.8244
	(21) $\longleftrightarrow (\frac{7-\sqrt{1345}}{2}L_{-5} + 20L_{-3}L_{-2}) 0\rangle$	55.125517	55.125511	551.34946	551.34937
$4q^{6}$	$(40) \longleftrightarrow (11.124748 L_{-6} + 9.6451291 L_{-4}L_{-2} + 4.4320186 L_{-3}^2 + L_{-2}^3) 0\rangle$	200.49775	200.49773	5280.2710	5280.2705
	$(31) \longleftrightarrow (-4.9655743 L_{-6} + 2.3354391 L_{-4}L_{-2} + 0.71473858 L_{-3}^2 + L_{-2}) 0\rangle$	112.78147	112.78146	1919.0972	1919.0969
	$(22) \longleftrightarrow (0.66457527 L_{-6} - 1.2909210 L_{-4}L_{-2} - 1.2605013 L_{-3}^2 + L_{-2}^3) 0\rangle$	69.265146	69.265138	636.39114	636.39101
	$\begin{array}{rcl} (0000 00) &\longleftrightarrow & (-1.6612491L_{-6} - 4.0646472L_{-4}L_{-2} \\ & & +1.4118691L_{-3}^2 + L_{-2}^3) 0\rangle \end{array}$	35.980431	35.980428	209.28433	209.28430

19/28

Hubbard models with arbitrary symmetries

Hopping electrons

$$H = \sum_{i=1}^{L} \left[\sum_{\sigma=\uparrow,\downarrow} \left(c_{i,\sigma}^{\dagger} c_{i+1,\sigma} + c_{i+1,\sigma}^{\dagger} c_{i,\sigma} \right) + U n_{i,\uparrow} n_{i,\downarrow} \right] \qquad n_{i,\sigma} = c_{i,\sigma}^{\dagger} c_{i,\sigma}$$

su(2) symmetry (gl(1|1) algebra); superconductivity, Mott transition

 $\mathcal{N} = 4$ super Yang-Mills: $\frac{1}{U} = g$, where $g^2 = \frac{\lambda}{8\pi^2} = t$ 'Hooft coupling

arbitrary simmetries: find integrable generalizations

$$P_{j,j+1}^{\sigma} = \text{permutation}, \ \pi_j^{\sigma} = \text{projector}; \ \Sigma_{j,j+1}^{\sigma} = \pi_j^{\sigma}(1 - \pi_{j+1}^{\sigma}) + (1 - \pi_j^{\sigma})\pi_{j+1}^{\sigma}; \ C_j^{\sigma} = 2\pi_j^{\sigma} - 1$$

$$H = \sum_{j=1}^{L} \left[\Sigma_{j,j+1}^{\uparrow} P_{j,j+1}^{\uparrow} + \Sigma_{j,j+1}^{\downarrow} P_{j,j+1}^{\downarrow} + U C_{j}^{\uparrow} C_{j}^{\downarrow} \right]$$

Interacting fermions: several particle types; screening effects; Bethe equations J. Drummond, G. Feverati, L. Frappat, E. Ragoucy, 2007 G. Feverati, L. Frappat, E. Ragoucy, 2009

AdS/CFT and integrability

So:

1) generalizations to other sectors (arbitrary simmetry)

2) NLIE for the Hubbard model

Example: $gl(2|2) \oplus gl(2|2)$ Hubbard Hamiltonian

$$H_{\mathsf{Hub}} = \sum_{i=1}^{L} \left\{ \sum_{\sigma=\uparrow,\downarrow} \left(c_{\sigma,i}^{\dagger} c_{\sigma,i+1} + c_{\sigma,i+1}^{\dagger} c_{\sigma,i} \right) \left(c_{\sigma,i}^{\prime\dagger} c_{\sigma,i+1}^{\prime} + c_{\sigma,i+1}^{\prime\dagger} c_{\sigma,i}^{\prime} + 1 - n_{\sigma,i}^{\prime} - n_{\sigma,i+1}^{\prime} \right) + U(1 - 2n_{\uparrow,i})(1 - 2n_{\downarrow,i}) \right\}$$

symmetry: $gl(1|1) \oplus gl(1|1) \oplus gl(1|1) \oplus gl(1|1)$

Perturbative calculation in $\frac{1}{U}$; second order:

$$H_{\text{eff}}^{(2)} = -\frac{1}{U} \sum_{i=1}^{L} \left[\left(\frac{1}{2} - 2S_i^z S_{i+1}^z \right) - \left(S_i^+ S_{i+1}^- + S_i^- S_{i+1}^+ \right) \mathcal{N}_{\uparrow,i,i+1}' \mathcal{N}_{\downarrow,i,i+1}' \right]$$

unprimed particles: charged (=repel each other) • ; primed particles: neutral •

Assembly of oligomeric proteins

Estimations in E.C. indicate that 18% only of proteins is strictly monomeric (D. Goodsell, 2000) the remaining ones are oligomeric, from dimeric on. Formation of interfaces

Public health: Alzheimer, Anthrax, Cholera ...

Interface = geometrical and chemical complementarity

Goal: systematic analysis of 3D structures to find the key of interface formation

Interfaces are specific (no erroneous mixing of protein interfaces), no "chimeric" interfaces, oligomeric proteins are chemically stable; still ...

Gemini: a tool to investigate interfaces

- GeminiDistances: from PDB 3D structure, detect the interface.
- GeminiRegions: interface is broken into non-interacting regions.
- GeminiGraph: representing the network of interactions.
- GeminiData: database

Code deposited to the "Agence pour la protection des programmes", 2009

GeminiDistances: from PDB structure, detect the interface

- distance between atoms of adjacent subunits <0.5 nm
- symmetrization (the closest, for the two subunits)

The symmetrization makes the interface weakly cut-off dependent

Protein: 1G31 Program Version: 2					Num	Number of monomers:			7	S	Simmetry:circul				
Amir	no acid	s for	each m	onomer	: 107	107	107 1	07 10	7 107	107					
Distance cutoffs: 20.0 5.0 Angstrom			Algorithm: simmetrized interf						ace						
Bond	led ato	ms (PD	B atom	seria	l numb	ers)									
A:	181	197	268	300	473	486	500	753	767	775	776	785	788	790	7
	OE2	CG2	NE	OE2	CD2	OG	CG	0	0	0	CB	Ν	0	CG	(
G:	5545	5546	5148	5429	5491	5451	5426	4979	4954	4948	5610	4935	4932	4953	49
	CE	NZ	CD	NH1	0	CG	CD	OH	CG2	N	0G1	0	Ν	CG1	(
	3.48	4.25	3.92	3.18	3.82	3.28	3.72	2.66	3.15	2.91	3.69	2.94	2.90	3.61	3
Bond	led ami	no aci	ds (PD	B seri	al num	bers)									
A:	28	30	40	44	68	70	72	104	106	107	107	109	109	109	
	E	V	R	E	L	S	Р	K	I	Р	Р	L	L	L	
	1	0	1	1	0	1	0	1	0	0	0	0	0	0	
	-	-	a	a	b	b	b	a	-	-	-	_	-	-	
G:	92	92	39	77	85	80	77	15	12	12	100	10	10	12	
	Κ	K	K	R	А	Р	R	Y	V	V	Т	R	R	V	
	1	1	1	1	0	0	1	1	0	0	1	1	1	0	
	a	a	a	b	a	-	b	b	-	-	b	-	-	-	
####	+######	######	######	######	######	#####									

Geometrical and chemical validation

similar geometry \rightarrow similar graph graph topology \rightarrow geometric constraints α , β structures comparison with programs of int. prediction

Tutoring

Supervision of the "tesi di laurea" of A. Nigro, Dipartimento di Fisica, Università di Milano: *Integrals of motion in the two dimensional Ising model and lattice-conformal dictionary*, 2005.

Supervision of the Master 2 internship of J. Zrimi, student of Physique Chimie, Faculté des Sciences et Techniques de Guéliz, Marrakech, 2010.

Supervision of the Master 1 internship of M. Chevalier, Bioinformatique et modélisation, Lyon, 2010.

Supervision of students from the local IUT (Informatique, Mesures Physiques), licence 2, 2009, 2010.

Teaching

Mathematical methods for physics (2008-2010) Quantum mechanics (2008) Statistical field theory (2007) Short course of bioinformatics (2010)

Research projects

- Turing machines: adaptation to more general "performance landscapes"; investigations around the maintain and the evolution of sexual reproduction
- Oligomeric proteins: characterization of the Gemini graphs; use of molecular dynamics tools