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Why Entanglement?

Classical computing −→ Boolean Logic −→ Bits
Quantum Information −→ Q-bits −→ Entanglement

How to define and measure it?

Von Neumann and Renyi entropies

New challenges for our understanding of Nature

EPR paradox
Bell inequalities
Interpretation of Quantum Mechanics

F. Ravanini Singular EE in 1D



Why Entanglement?

Classical computing −→ Boolean Logic −→ Bits
Quantum Information −→ Q-bits −→ Entanglement

How to define and measure it?

Von Neumann and Renyi entropies

New challenges for our understanding of Nature

EPR paradox
Bell inequalities
Interpretation of Quantum Mechanics

F. Ravanini Singular EE in 1D



Why Entanglement?

Classical computing −→ Boolean Logic −→ Bits
Quantum Information −→ Q-bits −→ Entanglement

How to define and measure it?

Von Neumann and Renyi entropies

New challenges for our understanding of Nature

EPR paradox
Bell inequalities
Interpretation of Quantum Mechanics

F. Ravanini Singular EE in 1D



Quantum systems and sub-systems

Consider a quantum system (e.g. a 1D quantum spin chain) in
a pure state |ψ〉, whose density matrix is ρ = |ψ〉〈ψ|.

Divide the system into two subsystems, A and B.
The Hilbert space then separates into two parts

H = HA ⊗HB

Suppose to do separated measures on each subsystem
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Separable and entangled states

States that can be written as |ψ〉 = |ψA〉 ⊗ |ψB〉 are called
separable
In this case measurements on B do not affect A
Not all states are separable

Basis in HA {|jA〉}
Basis in HB {|jB〉}

}
=⇒ Basis in H {|jA〉 ⊗ |jB〉}

Generic state in H

|ψ〉 =
d∑

j=1

λj |jA〉 ⊗ |jB〉

with d > 1, |jA〉, |jB〉 linearly independent
Non separable states are called entangled

〈jB |ψ〉 = λj |jA〉

i.e. measurements on B affect A state
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Observers and measures

In subsystems A and B we have observers capable of doing
measures on their subsystem only

Consider two spins 1/2

| ↑↑〉 and | ↓↓〉 no entanglement
1√
2

(| ↑↓〉 ± | ↓↑〉) maximally entangled: measures in A affect
those in B.

NON LOCALITY intrinsic in Quantum Mechanics? EPR
paradox, Bell inequalities, Aspect experiment, etc...
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How to measure Entanglement

Density Matrix of state |ψ〉 (Von Neumann 1927)

ρ = |ψ〉〈ψ|

Reduced density matrix for subsystem A

ρA = TrB(|ψ〉〈ψ|)

Quantum entropy (Von Neumann) of Entanglement

SA = −TrA(ρA log ρA) = SB

For a separable state SA = 0, for a maximally entangled state it is
maximal =⇒ SA is a measure of Entanglement
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Von Neumann Entropy

Quantum analog of Shannon Entropy

ρA =
∑

j

λj |jA〉〈jA| =⇒ SA = −
∑

j

λj log λj

Measures the amount of information in the given state
Schumacher’s theorem: information in a state seen by A can
be compressed in a eSA set of Q-bits

Bell states (maximally entangled) as unities of Entanglement

|Bell 1〉 =
| ↓↓〉+ | ↑↑〉√

2
, Bell 2〉 =

| ↓↓〉 − | ↑↑〉√
2

|Bell 3〉 =
| ↓↑〉+ | ↑↓〉√

2
, |Bell 4〉 =

| ↓↑〉 − | ↑↓〉√
2

S measures how many Bell pairs are contained in a given state
|ψ〉, i.e. closeness of the state to maximally entangled one.
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Other Entanglement estimators

Renyi entropy

Sα =
1

1− α
logTrAραA

It reduces to Von Neumann for α→ 1
Contains higher momenta and for α→∞ the spectrum of the
reduced density matrix ρA can be read
link with replica trick à la Calabrese Cardy

Tsallis Entropy
Concurrence
...
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Lattice models

Consider a square lattice with IRF. To each site i assign a spin
σi and to each plaquette delimited by sites i , j , k , l Boltzmann
weights

w(σi , σj , σk , σl ) = exp{−ε(σi , σj , σk , σl )/kT}

Total energy of the system

E =
∑
�

ε(σi , σj , σk , σl )

the sum is over all plaquettes (faces) of the lattice and i , j , k , l
are the surrounding sites. The partition function is

Z =
∑
conf

∏
�

w(σi , σj , σk , σl )
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Corner transfer matrix

Consider the following quadrant of the whole lattice

σ

σ

σ
1

A

Define the element of the Corner Transfer Matrix (CTM) as

Aσ̄σ̄′ =


∑
•

∏
�

w(σi , σj , σk , σl ) if σ1 = σ′1

= 0 if σ1 6= σ′1

where σ̄ = (σ1, ..., σm); σ̄′ = (σ′1, ..., σ
′
m)
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Partition function and CTM

Define Bσ̄σ̄′ in the same way as Aσ̄σ̄′ only with the last figure
rotated anticlockwise by 90°. Similarly define Cσ̄σ̄′ and Dσ̄σ̄′

by rotating by 180° and 270°.

Now we can build up the whole lattice by using the 4 CTM’s

Partition function

Z =
∑

σ̄,σ̄′,σ̄′′,σ̄′′′

Aσ̄σ̄′Bσ̄′σ̄′′Cσ̄′′σ̄′′′Dσ̄′′′σ̄ = Tr(ABCD)
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Density matrix and corner transfer matrix I

Quantum spin chain with L sites, Hamiltonian H and ground
state |0〉. Vacuum wave function 〈σ̄|0〉 = ψ0(σ̄). Density
matrix ρ = |0〉|〈0|.
Matrix element (assume ψ0 real)

ρ(σ̄, σ̄′) = 〈σ̄|0〉〈0|σ̄′〉 = ψ0(σ̄) ψ0(σ̄′)

Suppose there is a relation between this quantum chain of
hamiltionian H and a classical spin lattice model of row to row
transfer matrix T in the sense that [H,T ] = 0

Then the ground state of H is the eignestate with highest
eigenvalue of T .
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Density matrix and CTM

Consider a vector |ψ〉 ∈ H Hilbert space of H (or of T )

|ψ〉 = |0〉+
∑
k 6=0

ck |k〉

where |k〉 are the excited states of H with T eignevalues λk .

Apply N times the operator T to such vector

TN |ψ〉 = λN
0

(
|0〉+

∑
k

(
λk

λ0

)N

ck |k〉

)

In the limit N →∞

TN |ψ〉 ∼ λN
0 |0〉 or 〈σ̄|0〉 ∼ λ〈σ̄|TN |ψ〉

i.e. ψ0(σ̄) is the partition function evolving the model from an
initial |σ̄〉 to a final |0〉and ρ(σ̄, σ̄′) is a product of two
semi-infinite partition functions evolving the system from σ̄ to
+∞ and from σ̄′ to −∞.
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Reduced density matrix and CTM

Now suppose to divide the spins in two subsystems A:
σ̄A = (σ1, ..., σp) and B: σ̄B = (σp+1, ..., σL), i.e.
σ̄ = (σ̄A, σ̄B)

Reduced density matrix of subsystem A (entanglement density
matrix)

ρA(σ̄A, σ̄
′
A) =

∑
σ̄B

ψ0(σ̄A, σ̄B) ψ0(σ̄′A, σ̄B)
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Reduced density matrix and EE

The unnormalized reduced density matrix is

ρ̂A = (ABCD)σ̄,σ̄′

Normalization by dividing by the trace

ρA =
ρ̂A

TrAρ̂A

Entanglement entropy

SA = −TrρA log ρA = −Tr
ρ̂A log ρ̂A

TrAρ̂A
+ TrAρ̂A
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XYZ model

Hamiltonian

HXYZ = −J
∑
k

(σx
kσ

x
k+1 + Γσy

kσ
y
k+1 + ∆σz

kσ
z
k+1)

commutes with transfer matrix of 8-vertex model

for Γ = 1 it gives XXZ model
for Γ = 1, ∆ = 1 ferromagnetic XXX
for Γ = 1, ∆ = −1 antiferromagnetic XXX

it can be seen as a particularly interesting lattice regularization
of the sine-Gordon model
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XYZ model

XYZ is the hamiltonian limit of 8-vertex model, with partition
function

Z =
∑ 8∏

i=1

wni
i

where the 8 Boltzmann weights wi = e−βεi appear ni times
each on the lattice.

w1 = w2 = a, w3 = w4 = b, w5 = w6 = c , w7 = w8 = d
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Transfer matrix of 8-vertex

Square lattice with M rows and N columns with periodic b.c.
The vertical 8-vertex variables ti =↑, ↓ and the horizontal ones
sj =→,← live on the links.

Denote a row of arrows φr = (t1, t2, ..., tN) (r = 1...M).
Row-to-row transfer matrix

T (φ, φ′) =
N∏

n=1

w

 t ′n
sn sn+1

tn


can be diagonalized by Bethe ansatz (Baxter)

The partition function is

Z =
M∏

r=1

T (φr , φr+1)

This can be generalized to nontrivial b.c. by the introduction
of suitable double row transfer matrix
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CTM of 8-vertex

CTM is defined with a slight modification w.r.t. the IRF
models. There is no common spin on the two edges

As̄,s̄′ =
∑
•

∏
wi

and analogously B,C ,D with 90° rotations. One can prove
that A = C and B = D.
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Elliptic parametrization

A convenient parametrization of the Boltzmann weights

a = ρ snh(λ− u)

b = ρ snhu
c = ρ snhλ
d = ρ k snhλ snhu snh(λ− u)

In this parametrization (snhx = −isnix , etc...)

Γ =
1− k2snh2λ

1 + k2snh2λ
, ∆ = − cnhλ dnhλ

1 + k2snh2λ

Phases:
ferroelettric order for a > b + c + d , ∆ > 1
ferroelettric order for b > a + c + d , ∆ > 1
disorder for a, b, c , d < 1

2 (a + b + c + d), −1 < ∆ < 1
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Diagonalization of CTM

In the thermodynamic limit Baxter (1977) proved the following
formula for the diagonalized CTM

Ad (u) = Cd (u) =

(
1 0
0 s

)
⊗
(

1 0
0 s2

)
⊗
(

1 0
0 s3

)
⊗ ...

Bd (u) = Dd (u) =

(
1 0
0 t

)
⊗
(

1 0
0 t2

)
⊗
(

1 0
0 t3

)
⊗ ...

where

s = exp
(
− πu
2I (k)

)
, t = exp

(
−π(λ− u)

2I (k)

)
and I (k) is the elliptic integral of I kind of modulus k
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Reduced density matrix

Define x = (st)2 = exp
(
− πλ

I (k)

)
and use the CTM density

matrix formula

ρA = ABCD = (AB)2 =

(
1 0
0 x

)
⊗
(

1 0
0 x2

)
⊗
(

1 0
0 x3

)
⊗...

ρ = eεO where O is a operator with integer spectrum

O =

(
0 0
0 1

)
⊗
(

0 0
0 2

)
⊗
(

0 0
0 3

)
⊗ ...

ε = − πλ
I (k) depends on the XYZ parameters through elliptic

functions

F. Ravanini Singular EE in 1D



Reduced density matrix

Define x = (st)2 = exp
(
− πλ

I (k)

)
and use the CTM density

matrix formula

ρA = ABCD = (AB)2 =

(
1 0
0 x

)
⊗
(

1 0
0 x2

)
⊗
(

1 0
0 x3

)
⊗...

ρ = eεO where O is a operator with integer spectrum

O =

(
0 0
0 1

)
⊗
(

0 0
0 2

)
⊗
(

0 0
0 3

)
⊗ ...

ε = − πλ
I (k) depends on the XYZ parameters through elliptic

functions

F. Ravanini Singular EE in 1D



Entanglement entropy of XYZ model

The trace of the reduced density matrix

Z = TrρA =
∞∏
j=1

(1 + x j) and SA = −ε logZ
∂ε

+ logZ

leads to the final formula for Von Neumann

SA = ε

∞∑
j=1

j
(1 + e jε)

+
∞∑
j=1

log(1 + e−jε)

and for Rényi entropy

Sα =
α

α− 1

∞∑
j=1

log(1 + q2j) +
1

1− α

∞∑
j=1

log(1 + q2jα)

that can also be written in theta function terms

Sα =
1

6(1− α)

[
α log

θ4(0, q)θ3(0, q)

θ2
2(0, q)

+ log
θ2
2(0, qα)

θ3(0, qα)θ4(0, qα)

]
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Phase diagram of XYZ model

Approaching criticality the Calabese - Cardy (2004) formula holds

SA =
c
6
log

ξ

a
+ cost.

everywhere but at the E1,2 points
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Entanglement Entropy 3D plot
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Isoentropic lines
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Tricritical points

C1,2: conformal points - entropy diverges close to them - linear
spectrum
E1,2: Non-conformal points - entropy goes from 0 to ∞
arbitrarily close to them, depending on direction.
They corrspond to Isotropic ferromagnetic Heisenberg −→
quadratic spectrum
Points similar to E1,2 previously observed in XY model in
magnetic field (Franchini, Its, Korepin)
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Conformal points

Expansion close to conformal points C1,2 agree with expectations

Sα =
1
12

(
1 +

1
α

)
log ξ − 1

6

(
2− 1

α

)
log 2

+
α

1− α

[
ξ−2

16
+
ξ−4

512
+ O(ξ−6)

]
− 1

1− α

[
(4ξ)−2/α +

1
2

(4ξ)−4/α + O(ξ−6/α)

]
Leading correction ξ−δ/α with δ = 2. Operator responsible of this
correction (Calabrese, Cardy, Peschel - 2010) has conformal
dimensions (∆, ∆̄) = (1, 1)
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Non-conformal points

Expanding around E1:

Γ = −1 + δ cosφ , ∆ = −1− δ sinφ
(
0 ≤ φ ≤ π

2

)
one finds

λ ∼ I (k ′) and ε =
I (k ′)
I (k)

So ε varies from 0 at φ = 0 to ∞ at φ = π
2 . Consequently the

entropy explores all values from 0 to ∞ approaching E1 from
various directions =⇒ essential singularity.

Highly symmetric point, higly degenerate ground state =⇒
level crossing, entanglement can change discontinously
EE can be used as a marker to detect such essential phase
transition points
Cardy-Calabrese formula is non longer valid: what substitues
it?
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Conclusions

We have got Von Neumann and Rényi EE from integrability in
the XYZ spin chain, valid everywhere
It can be written in nice modular form (theta functions) and
its modular properties should be investigated further
Inspecting this formula near critical points, we have discovered
essential singularities with unusual critical behaviour
EE can be used as a marker to discriminate behaviours of
phase transistion points.
An approach taking into account finite size effects would help
to clarify these issues
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