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@ Introduction:

e Entanglement in Quantum Mechanics
e Von Neumann and Renyi entropies as a measure of
Entanglement

Entanglement entropy in 1D lattice spin chains: the Corner
Transfer Matrix (CTM) method

XYZ chain exact Entanglement Entropy

Essential critical point for the entropy

Conclusions
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Why Entanglement?

e Classical computing — Boolean Logic — Bits
@ Quantum Information — Q-bits — Entanglement
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@ Quantum Information — Q-bits — Entanglement

o How to define and measure it?

e Von Neumann and Renyi entropies
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Why Entanglement?

Classical computing — Boolean Logic — Bits

Quantum Information — Q-bits — Entanglement

How to define and measure it?

e Von Neumann and Renyi entropies

New challenges for our understanding of Nature

e EPR paradox
o Bell inequalities
o Interpretation of Quantum Mechanics
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Quantum systems and sub-systems

e Consider a quantum system (e.g. a 1D quantum spin chain) in
a pure state |1), whose density matrix is p = [¢)(¢)|.
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Quantum systems and sub-systems

e Consider a quantum system (e.g. a 1D quantum spin chain) in
a pure state |1), whose density matrix is p = [¢)(¢)|.

@ Divide the system into two subsystems, A and B.
The Hilbert space then separates into two parts

H=Ha®Hp
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Quantum systems and sub-systems

e Consider a quantum system (e.g. a 1D quantum spin chain) in
a pure state |1), whose density matrix is p = [¢)(¢)|.

@ Divide the system into two subsystems, A and B.
The Hilbert space then separates into two parts

H=Ha®Hp

@ Suppose to do separated measures on each subsystem
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Separable and entangled states

e States that can be written as |¢)) = [1)a) ® |1p) are called

separable
In this case measurements on B do not affect A
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Separable and entangled states

e States that can be written as |¢)) = [1)a) ® |1p) are called

separable
In this case measurements on B do not affect A

@ Not all states are separable

Basisin Ha  {lja)}

Basisin Hg  {js)} } = Basisin # {lja) ® i)}
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Separable and entangled states

e States that can be written as |¢)) = [1)a) ® |1p) are called
separable
In this case measurements on B do not affect A

@ Not all states are separable

Basis in H {lja)} - . .
Basis in 7'[1; {|j2>} } = Basisin ¥ {li) @ i)}

@ Generic state in H
d
) = Ajlia) ® lis)
j=1

with d > 1, |ja), |jg) linearly independent
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Separable and entangled states

e States that can be written as |¢)) = [1)a) ® |1p) are called
separable
In this case measurements on B do not affect A

@ Not all states are separable

Basis in H {lja)} - . .
Basis in 7'[1; {|j2>} } = Basisin ¥ {li) @ i)}

@ Generic state in H
d
) = Ajlia) ® lis)
j=1

with d > 1, |ja), |jg) linearly independent
@ Non separable states are called entangled

Uslw) = Ajlja)
i.e. measurements on B affect A state



Observers and measures

@ In subsystems A and B we have observers capable of doing
measures on their subsystem only
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Observers and measures

@ In subsystems A and B we have observers capable of doing
measures on their subsystem only

e Consider two spins 1/2

o | 1) and | JJ) no entanglement
° %ﬂ 1) £ | 11)) maximally entangled: measures in A affect
those in B.

o NON LOCALITY intrinsic in Quantum Mechanics? EPR
paradox, Bell inequalities, Aspect experiment, etc...
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How to measure Entanglement

Density Matrix of state |¢)

p =) (]

Reduced density matrix for subsystem A

pa = Trp(|¥)(¥])
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How to measure Entanglement

Density Matrix of state [1))

p =) (]

Reduced density matrix for subsystem A

pa = Trp(|¥)(¥])

Quantum entropy (Von Neumann) of Entanglement

Sa = —Tra(palogpa) = Sp

For a separable state S5 = 0, for a maximally entangled state it is
maximal = Sp is a measure of Entanglement
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Von Neumann Entropy

@ Quantum analog of Shannon Entropy

pa=Y Alialal = Sa=-) Nlog\
j j

Measures the amount of information in the given state

@ Schumacher’s theorem: information in a state seen by A can
be compressed in a e5A set of Q-bits
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Von Neumann Entropy

@ Quantum analog of Shannon Entropy

pa=Y Alialal = Sa=-) Nlog\
j j

Measures the amount of information in the given state

@ Schumacher’s theorem: information in a state seen by A can
be compressed in a e5A set of Q-bits

@ Bell states (maximally entangled) as unities of Entanglement

W)+ L) =1

Bell 1) = XTI gepgy = 1w — 1T
V2 V2

D+ 11 D =119

[Bell 3) = BV |Bell4) = 5

S measures how many Bell pairs are contained in a given state
|1), i.e. closeness of the state to maximally entangled one.

F. Ravanini Singular EE in 1D



Other Entanglement estimators

@ Renyi entropy

1
S0 = log Tr ap%
T 1 o g LIAPA

o It reduces to Von Neumann for o — 1

e Contains higher momenta and for a — oo the spectrum of the
reduced density matrix pa can be read

o link with replica trick a la Calabrese Cardy

@ Tsallis Entropy
@ Concurrence
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Lattice models

o Consider a square lattice with IRF. To each site i assign a spin
o; and to each plaquette delimited by sites i/, j, k, | Boltzmann
weights

w(oi,0j,0k,01) = exp{—€(0i,0j,0k,01)/kT}
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Lattice models

o Consider a square lattice with IRF. To each site i assign a spin
o; and to each plaquette delimited by sites i/, j, k, | Boltzmann
weights

w(oi,0),0k,01) = exp{—¢e(0i,0),0k,01)/kT}
o Total energy of the system

£=> e(oi,0,040))
O

the sum is over all plaquettes (faces) of the lattice and /,, k, /
are the surrounding sites. The partition function is

Z = Z HW(O’,’,UJ',O';(,U/)

conf O
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Corner transfer matrix

e Consider the following quadrant of the whole lattice

ol
[+
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Corner transfer matrix

e Consider the following quadrant of the whole lattice

ol
[+

A—A

@ Define the element of the Corner Transfer Matrix (CTM) as
ZHW(U;,Jj,ak,U/) if o1=0}
Aszr =< * H
=0 if o1 # 0}
=/

where G = (01, ...,0m); & = (0], ..., 00)
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Partition function and CTM

@ Define Bs;: in the same way as Az5 only with the last figure
rotated anticlockwise by 90°. Similarly define C55 and D5/
by rotating by 180° and 270°.
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Partition function and CTM

@ Define Bs;: in the same way as Az5 only with the last figure
rotated anticlockwise by 90°. Similarly define C55 and D5/
by rotating by 180° and 270°.

@ Now we can build up the whole lattice by using the 4 CTM's

o

—t—1

@ Partition function
Z = Z Aa.a./ Ba.la.// Ca.//a./// Da.///a. _= TI'(ABCD)
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Density matrix and corner transfer matrix |

@ Quantum spin chain with L sites, Hamiltonian H and ground
state |0). Vacuum wave function (5|0) = 1)(&). Density
matrix p = [0) (0.

e Matrix element (assume g real)

p(5,5") = (510)(0[5") = 1ho(5) 10(5")
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Density matrix and corner transfer matrix |

@ Quantum spin chain with L sites, Hamiltonian H and ground
state |0). Vacuum wave function (5|0) = 1)(&). Density
matrix p = [0) (0.

e Matrix element (assume g real)

p(5,5") = (510)(0[5") = 1ho(5) 10(5")

@ Suppose there is a relation between this quantum chain of
hamiltionian H and a classical spin lattice model of row to row
transfer matrix T in the sense that [H, T] =0
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Density matrix and corner transfer matrix |

@ Quantum spin chain with L sites, Hamiltonian H and ground
state |0). Vacuum wave function (5|0) = 1)(&). Density
matrix p = [0) (0.

e Matrix element (assume g real)

p(5,5") = (510)(0[5") = 1ho(5) 10(5")

@ Suppose there is a relation between this quantum chain of
hamiltionian H and a classical spin lattice model of row to row
transfer matrix T in the sense that [H, T] =0

@ Then the ground state of H is the eignestate with highest
eigenvalue of T.
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Density matrix and CTM

e Consider a vector ) € H Hilbert space of H (or of T)

) =10) + ) _ clk)
k0

where | k) are the excited states of H with T eignevalues Ay.
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Density matrix and CTM

e Consider a vector ) € H Hilbert space of H (or of T)

) =10) + ) _ clk)
k0

where | k) are the excited states of H with T eignevalues Ay.

@ Apply N times the operator T to such vector

Nigy — AN M\
V1) = A <|o>+; (%) k|k>>
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Density matrix and CTM

e Consider a vector ) € H Hilbert space of H (or of T)
[9) = 10) + > clk)
k#0
where | k) are the excited states of H with T eignevalues Ay.

@ Apply N times the operator T to such vector

Nigy — AN M\
V1) = A <|o>+; (%) k|k>>

@ In the limit N — oo
V) ~ABI0)  or (310) ~ Mg TMu)
i.e. 1o(0) is the partition function evolving the model from an
initial |7) to a final |0)and p(a,5") is a product of two

semi-infinite partition functions evolving the system from & to
+o0o and from &’ to —o0.
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Reduced density matrix and CTM

@ Now suppose to divide the spins in two subsystems A:
op = (01, ...,O'p) and B: og = (Up+1, ...,UL), i.e.
& =(5a,58)

N
< P
A ABX >
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Reduced density matrix and CTM

@ Now suppose to divide the spins in two subsystems A:
op = (01, ...,O'p) and B: og = (Up+1, ...,UL), i.e.
o= (0a,0B)

@ Reduced density matrix of subsystem A (entanglement density
matrix)

pa(Ga,50) =Y vo(3a,58) Yo(5h,55)

N
< P
A ABX >
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Reduced density matrix and EE

@ The unnormalized reduced density matrix is
pa = (ABCD)s 5

Normalization by dividing by the trace

~

_ _PA
Trapa

PA
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Reduced density matrix and EE

@ The unnormalized reduced density matrix is
pa = (ABCD)s 5

Normalization by dividing by the trace

~

_ _PA
Trapa

PA

e Entanglement entropy

51 log
_TyPACEPA

—— + Trapa
Trapa

Sa= —Trpalogpa =
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XYZ model

o Hamiltonian

Hxyz = —J Z(Ufﬁafﬂ + FUZJZJA + Ackokiq)
k
commutes with transfer matrix of 8-vertex model

o for I =1 it gives XXZ model
o for ' =1, A =1 ferromagnetic XXX
o for ' =1, A = —1 antiferromagnetic XXX
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XYZ model

o Hamiltonian

Hxyz = —J Z(Ufﬁafﬂ + FUZJZJA + Ackokiq)
k
commutes with transfer matrix of 8-vertex model

o for I =1 it gives XXZ model
o for ' =1, A =1 ferromagnetic XXX
o for ' =1, A = —1 antiferromagnetic XXX

@ it can be seen as a particularly interesting lattice regularization
of the sine-Gordon model
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XYZ model

@ XYZ is the hamiltonian limit of 8-vertex model, with partition

function .
2= I
i=1

where the 8 Boltzmann weights w; = e~ appear n; times
each on the lattice.

TTYTTT
T

Wi=w=aws=ws=b wg=wg=c¢, wg =wg =d
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Transfer matrix of 8-vertex

@ Square lattice with M rows and N columns with periodic b.c.
The vertical 8-vertex variables t; =7, | and the horizontal ones
sj =—, < live on the links.
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Transfer matrix of 8-vertex

@ Square lattice with M rows and N columns with periodic b.c.
The vertical 8-vertex variables t; =7, | and the horizontal ones
sj =—, < live on the links.

@ Denote a row of arrows ¢, = (t1, ta, ..., ty) (r = 1...M).
Row-to-row transfer matrix
N t),
T((Z)a ¢/) = H w Sn Sn+1
n=1

th

can be diagonalized by Bethe ansatz
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Transfer matrix of 8-vertex

@ Square lattice with M rows and N columns with periodic b.c.
The vertical 8-vertex variables t; =7, | and the horizontal ones
sj =—, < live on the links.

@ Denote a row of arrows ¢, = (t1, ta, ..., ty) (r = 1...M).
Row-to-row transfer matrix
N t),
T, ¢)=][w| s»  sana
n=1 th
can be diagonalized by Bethe ansatz

@ The partition function is
M

Z= H T(¢r; ¢r+1)

r=1
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Transfer matrix of 8-vertex

@ Square lattice with M rows and N columns with periodic b.c.
The vertical 8-vertex variables t; =7, | and the horizontal ones
sj =—, < live on the links.

@ Denote a row of arrows ¢, = (t1, ta, ..., ty) (r = 1...M).
Row-to-row transfer matrix
N t),
T, ¢)=][w| s»  sana
n=1 th
can be diagonalized by Bethe ansatz

@ The partition function is
M

Z= H T(¢r; ¢r+1)

r=1

@ This can be generalized to nontrivial b.c. by the introduction
of suitable double row transfer matrix
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CTM of 8-vertex

e CTM is defined with a slight modification w.r.t. the IRF
models. There is no common spin on the two edges

S Sy S3 Sy Sg S6

sl |

53

S4

S¢ —efe—

A§,§/ = Z H Wi

e and analogously B, C, D with 90° rotations. One can prove
that A= C and B=D.



Elliptic parametrization

@ A convenient parametrization of the Boltzmann weights

a = psnh(A—u)

b = psnhu

¢ = psnhA

d = pksnhAsnhusnh(\ — u)
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Elliptic parametrization

@ A convenient parametrization of the Boltzmann weights

a = psnh(A—u)
b = psnhu
¢ = psnhA
d = pksnhAsnhusnh(\ — u)
@ In this parametrization (snhx = —isnix, etc...)
1 — k?snh?)\ A cnhA dnhA

- 1+ k2snh?)\

T + k2snh?\
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Elliptic parametrization

@ A convenient parametrization of the Boltzmann weights

a = psnh(A—u)
b = psnhu
¢ = psnhA
d = pksnhAsnhusnh(\ — u)
@ In this parametrization (snhx = —isnix, etc...)
1 — k?snh?)\ A cnhA dnhA

- 1+ k2snh?)\ T + k2snh?\
@ Phases:

o ferroelettric order fora>b+c+d, A >1
o ferroelettric order for b> a+c+d, A >1
o disorder for a, b, c,d < %(a+b+c+d), -1<A<1
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Diagonalization of CTM

@ In the thermodynamic limit proved the following
formula for the diagonalized CTM

aae) = =5 oy 2)e(o 5 )e-
1
0

Bal) = 0at)= (5 2 )e(g p)e(s 5 )en

where

(i) e

and /(k) is the elliptic integral of | kind of modulus k
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Reduced density matrix

o Define x = (st)? = exp (—%) and use the CTM density

matrix formula

3 a2 (10 1 0 1 0
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Reduced density matrix

o Define x = (st)? = exp (—%) and use the CTM density

matrix formula

B B > (10 1 0 1 0
pa = ABCD = (AB)* = < 0 x )@ 0 2 )® o .3 )@
o p = e© where O is a operator with integer spectrum

o-(32)e(82)e(32)e-

€= —% depends on the XYZ parameters through elliptic
functions
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Entanglement entropy of XYZ model

The trace of the reduced density matrix

o)

Z =Trpp = H(l + x) and Sa
j=1

Iog Z
Oe

+ log Z

leads to the final formula for Von Neumann

o0

=g * s -+ )
J=

and for Rényi entropy

) 1 = .
%) 4 1 a Z log(1 + ¢¥<)
j=1

that can also be written in theta function terms

1 04(0, 9)63(0, q) 05(0, %) ]
—— |alo +lo
6(1 — o) [ & 62(0, q) € 930, )04(0, ¢°)
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Phase diagram of XYZ model

r

Approaching criticality the formula holds

Sa= ¢ log ¢ + cost.
6 a

everywhere but at the E; > points
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Entanglement Entropy 3D plot
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Tricritical points

e (;: conformal points - entropy diverges close to them - linear
spectrum

@ £;5: Non-conformal points - entropy goes from 0 to oo
arbitrarily close to them, depending on direction.
They corrspond to Isotropic ferromagnetic Heisenberg —
quadratic spectrum

@ Points similar to Ej > previously observed in XY model in
magnetic field
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Conformal points

Expansion close to conformal points C; » agree with expectations

1 1 1 1
Sea = 12<1+ )log§—6<2—>|og2

1
l1—«

(89) 2/ 4 589) 7 1 0(¢ o))

Leading correction €9/ with § = 2. Operator responsible of this
correction has conformal

dimensions (A, A) = (1,1)
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Non-conformal points

Expanding around Ej:

[——14+6cos¢ , A=—1—4sing (oggﬁgﬁ)
2
one finds )
/ p—
A~ (k") and €= 0

So ¢ varies from 0 at ¢ = 0 to oo at ¢ = 5. Consequently the
entropy explores all values from 0 to oo approaching E; from
various directions = essential singularity.
e Highly symmetric point, higly degenerate ground state —>
level crossing, entanglement can change discontinously
@ EE can be used as a marker to detect such essential phase
transition points
o Cardy-Calabrese formula is non longer valid: what substitues
it?
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Conclusions

@ We have got Von Neumann and Rényi EE from integrability in
the XYZ spin chain, valid everywhere

@ It can be written in nice modular form (theta functions) and
its modular properties should be investigated further

@ Inspecting this formula near critical points, we have discovered
essential singularities with unusual critical behaviour

@ EE can be used as a marker to discriminate behaviours of
phase transistion points.

@ An approach taking into account finite size effects would help
to clarify these issues
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