Lattice QCD's flavour physics results for phenomenologists - a mini review

Rencontres de Moriond

La Thuile, Italy

13.-20.03.2011

Andreas Jüttner CERN Theory Division

Why lattice QCD?

- perturbation theory works well for weak coupling
- bound state observables like the proton mass or the B-decay constant for example cannot be predicted by perturbation theory

Why lattice QCD?

- perturbation theory works well for weak coupling
- bound state observables like the proton mass or the B-decay constant for example cannot be predicted by perturbation theory

but simulations of lattice QCD can do this:

What is ...?

	QCD
Nc	3
N _f , fundamental	1+1+1+1+1+1
SU(2) iso-spin brk.	1
m_{π}^{\pm}	135MeV
V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
а	0

What is ...?

	QCD	Lattice QCD
N _c	3	3
N _f , fundamental	1+1+1+1+1+1	0, 2, 2+1, 2+1+1
SU(2) iso-spin brk.	1	¥ see Taku's talk
m_{π}^{\pm}	135MeV	$\lesssim m_{\pi}^{\sf sim}$
V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2-3fm
а	0	0.05-0.1fm

Status of simulations

Plot kindly provided by G. Herdoiza

- dynamical simulations are standard by now
- first simulations now include dynamical charm quark
- simulations with phyiscal pion masses have been feasible
- cut-off $a^{-1} = 1/0.05 fm \approx 4 GeV$

Simulations

• discretise space-time in euclidean QCD path integral

$$\langle O[\bar{\psi},\psi,A]\rangle_{\rm QCD} = \frac{1}{Z}\int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A) \, e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$$

and do numerical MC-integration

(discretisations: Wilson, staggered, twisted mass, domain wall, overlap, $\ldots)$

Simulations

• discretise space-time in euclidean QCD path integral

$$\langle O[\bar{\psi},\psi,A]\rangle_{\rm QCD} = \frac{1}{Z}\int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A) \, e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$$

and do numerical MC-integration

(discretisations: Wilson, staggered, twisted mass, domain wall, overlap, \ldots)

 extremely compute-intensive, so project time-scales of O(years) even on fastest super-computers

IBM BlueGene/Q

Simulations

• discretise space-time in euclidean QCD path integral

$$\langle O[\bar{\psi},\psi,A]\rangle_{\rm QCD} = \frac{1}{Z}\int D\bar{\psi}D\psi DAO(\bar{\psi},\psi,A)\,e^{-S_G(U)-S_q(\bar{\psi},\psi,U)}$$

and do numerical MC-integration

(discretisations: Wilson, staggered, twisted mass, domain wall, overlap, ...)

- extremely compute-intensive, so project time-scales of O(years) even on fastest super-computers
- biggest machine is good but ≠ best lattice QCD even more important are fundamental understanding and usage of
 - field theory
 - algorithms

IBM BlueGene/Q

- most current results systematics-dominated
- extrapolation of lattice data to the physical point very often tricky (it's easy if you already know the experimental number ... but what if not?)

- most current results systematics-dominated
- extrapolation of lattice data to the physical point very often tricky (it's easy if you already know the experimental number ... but what if not?)

- most current results systematics-dominated
- extrapolation of lattice data to the physical point very often tricky (it's easy if you already know the experimental number ... but what if not?)

- most current results systematics-dominated
- extrapolation of lattice data to the physical point very often tricky (it's easy if you already know the experimental number ... but what if not?)

Systematics continued

renormalisation

(Often NLO lattice PT - that's quick and dirty. Lattice allows to do it non-perturbatively, so why not use it? In this way all reference to perturbation theory can be removed!!!)

Systematics continued

renormalisation

(Often NLO lattice PT - that's quick and dirty. Lattice allows to do it non-perturbatively, so why not use it? In this way all reference to perturbation theory can be removed!!!)

hopefully not a show-stopper: reducing a beyond ≈ 0.06fm turns out to be problematic

critical slowing down of algorithms

Schaefer et al. arXiv:0910.1465, Nucl. Phys. B845 (2011) 93, Lüscher PoS(LATTICE2010)015

not clear which observables affected

I think that this needs to be studied more thoroughly than many collaborations wish to believe

Systematics continued

renormalisation

(Often NLO lattice PT - that's quick and dirty. Lattice allows to do it non-perturbatively, so why not use it? In this way all reference to perturbation theory can be removed!!!)

hopefully not a show-stopper: reducing a beyond ≈ 0.06fm turns out to be problematic

critical slowing down of algorithms

Schaefer et al. arXiv:0910.1465, Nucl. Phys. B845 (2011) 93, Lüscher PoS(LATTICE2010)015

not clear which observables affected

I think that this needs to be studied more thoroughly than many collaborations wish to believe

- scale setting
- finite size errors
- chosen discretisation
- ...

Lattice phenomenology

Experiment	=	$\textbf{SM} \perp \textbf{NPQCD}$	×	NPQCD
ΔM_d	=	$\text{const.} \times V_{tb}V_{td} ^2 S\!\left(\frac{\bar{m}_t^2}{M_W^2} \right)$	×	$f_{B_d}^2 B_{B_d}$
		perturbation theory		lattice QCD, sum rules

Lattice phenomenology

Experiment	=	$\textbf{SM} \perp \textbf{NPQCD}$	×	NPQCD
ΔM_d	=	$\text{const.} \times V_{tb}V_{td} ^2 S\!\left(\frac{\bar{m}_t^2}{M_W^2} \right)$	×	$f_{B_d}^2 B_{B_d}$
		perturbation theory		lattice QCD, sum rules

Other NP SM observables or parameters:

- meson and baryon spectra
- matrix elements relevant for phenomenology:
 - decay constants
 - form factors
 - mixing matrix elements
 - hadr. K-decays

$$\begin{array}{l} f_{\pi}, \, f_{K}, \, f_{D_{(s)}}, \, f_{B_{(s)}}) \\ f^{\pi\pi}, \, f^{K\pi}, \, f^{D \to K}, \, f^{B \to \pi}, \, \ldots) \end{array}$$

$$(B, B_{B_{(s)}}, \dots)$$

 (A_0, A_2)

Quality of lattice results

Very strong claims are made based on lattice QCD results:

- "We find a (2-3)σ tension in the unitarity triangle" Laiho, Lunghi, Van de Water, PRD 81 (2010) 034503
- "... confirming CKM unitarity at the permille level" FLAG arXiv:1011.4408
- "... we find evidence of new physics in both B_d and B_s systems ..." CKMfitter Group PRD 83 (2011) 036004
- "Possible evidence for the breakdown of the CKM-paradigm of CP-violation"

Lunghi, Soni, PLB 697, 323-328 (2011)

Quality of lattice results

Very strong claims are made based on lattice QCD results:

- "We find a (2-3)σ tension in the unitarity triangle" Laiho, Lunghi, Van de Water, PRD 81 (2010) 034503
- "... confirming CKM unitarity at the permille level" FLAG arXiv:1011.4408
- "... we find evidence of new physics in both B_d and B_s systems ..." CKMfitter Group PRD 83 (2011) 036004
- "Possible evidence for the breakdown of the CKM-paradigm of CP-violation"

Lunghi, Soni, PLB 697, 323-328 (2011)

How to deal with lattice results?

Are these statements water-proof?

FLAG

→ Flavia Net Lattice Averaging Group (FLAG) was founded to allow also to an outsider to judge the quality and 'state-of-the-art'-fulnes of lattice results relevant to flavor physics

People: G. Colangelo, S. Dürr, A. J., L. Lellouch, H. Leutwyler, V. Lubicz, S. Necco, C. Sachrajda, S. Simula, A. Vladikas, U. Wenger, H. Wittig

FLAG

→ Flavia Net Lattice Averaging Group (FLAG) was founded to allow also to an outsider to judge the quality and 'state-of-the-art'-fulnes of lattice results relevant to flavor physics

- People: G. Colangelo, S. Dürr, A. J., L. Lellouch, H. Leutwyler, V. Lubicz, S. Necco, C. Sachrajda, S. Simula, A. Vladikas, U. Wenger, H. Wittig
 - \rightarrow criteria: publication status
 - chiral extrapolation
 - continuum extrapolation
 - finite volume errors
 - renormalisation
 - renormalisation scale running
 - → quantities: $m_{u,d}$, m_s , $f_+^{K\pi}(0)$, f_K/f_{π} , B_K , NLO LEC's, potentially more in the future
 - → planned periodic updates of arXiv:1011.4408, http://itpwiki.unibe.ch/flag

FLAG

→ Flavia Net Lattice Averaging Group (FLAG) was founded to allow also to an outsider to judge the quality and 'state-of-the-art'-fulnes of lattice results relevant to flavor physics

- People: G. Colangelo, S. Dürr, A. J., L. Lellouch, H. Leutwyler, V. Lubicz, S. Necco, C. Sachrajda, S. Simula, A. Vladikas, U. Wenger, H. Wittig
 - \rightarrow criteria: publication status
 - chiral extrapolation
 - continuum extrapolation
 - finite volume errors
 - renormalisation
 - renormalisation scale running
 - → quantities: $m_{u,d}$, m_s , $f_+^{K\pi}(0)$, f_K/f_{π} , B_K , NLO LEC's, potentially more in the future
 - → planned periodic updates of arXiv:1011.4408, http://itpwiki.unibe.ch/flag

Other efforts by Laiho, Lunghi, Van de Water: Lattice QCD inputs to the CKM unitarity triangle analysis, Phys.Rev. D81 (2010) 034503 http://www.latticeaverages.org

Nf

secto	ز ۲	0	
3		Š	
Stat	oda,	ళ	
in the second			
ial ca			
17 K	8 <i>4</i>	f_{κ}/f_{π}	net come

 \sim

ETM 10E	2+1+1	С	•	•	•	1.224(13) _{stat}
MILC 10 RBC/UKQCD 10A BMW 10 JLQCD/TWQCD 09A MILC 09A MILC 09 Aubin 08 PACS-CS 08, 08A RBC/UKQCD 08 HPQCD/UKQCD 07 NPLQCD 06	2+1 2+1 2+1 2+1 2+1 2+1 2+1 2+1 2+1 2+1	C P C C A C A A A A	• • * • • • * • •	* • * = * • = = * =	******	$\begin{array}{c} 1.197(2)\binom{+3}{-7}\\ 1.204(7)(25)\\ 1.192(7)(6)\\ 1.210(12)_{stat}\\ 1.198(2)\binom{+6}{-6}\\ 1.197(3)\binom{+6}{-16}\\ 1.197(3)\binom{-16}{-13}\\ 1.191(16)(17)\\ 1.189(20)\\ 1.205(18)(62)\\ 1.189(2)(7)\\ 1.218(2)\binom{+11}{-24}\end{array}$
ETM 10D ETM 09 QCDSF/UKQCD 07	2 2 2	C A C	•	* *	• • *	1.190(8) _{stat} 1.210(6)(15)(9) 1.21(3)

FLAG arXiv:1011.4408

Collaboration

For both $N_f = 2 + 1$ and N + f = 2 FLAG identified high quality lattice results and provides averages:

N _f	$f_+^{K\pi}(0)$	f_{K}/f_{π}
2+1	0.9560(57)(62)	1.193(5)
2	0.9599(34)(41)	1.210(6)(17)

FLAG averages FLAG arXiv:1011.4408.

Together with experimental input

$ V_{us}f_+^{K\pi}(0) $	=	0.2163(5)
$\frac{f_{K}V_{us}}{f_{\pi}V_{ud}}$	=	0.2758(5)
V _{ud}	=	0.97425(22)

FLAVIA KAON WG Eur.Phys.J. C69 (2010) 399-424 Hardy, Towner, Phys. Rev., C79, 2009,05550

FLAG did two kind of analysis:

a) test the SM:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \stackrel{?}{=} 1$$

b) using SM-correlations

FLAG tests the SM: $|V_u|^2 \equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

So indeed, CKM-unitarity confiremd at the per-mil level

So indeed, CKM-unitarity confiremd at the per-mil level

FLAG assumes first row untiarity

Nice result: Assuming first row unitarity lattice QCD makes prediction for $|V_{ud}|$ with same precision as super-allowed nuclear beta decays and fully compatible with it

ϵ_{K} , $f_{B_{(s)}}$ and $B_{B_{(s)}}$

lattice QCD input to SM-tests (cf. Soni's talk in this session)

K-observables	B-observat	oles			
$\epsilon_K \propto B_K$	$\Delta M_d \propto \Delta M_s \propto$	$f_{B_d}^2 B_{B_d}$ $f_{B_s}^2 B_{B_s}$	ΔΓ _d ΔΓ _s	α α	$(f_{B_d}B_{B_d})^2$ $(f_{B_s}B_{B_{(s)}})^2$

ϵ_{K} , $f_{B_{(s)}}$ and $B_{B_{(s)}}$

lattice QCD input to SM-tests (cf. Soni's talk in this session)

K-o	bser	vables	B-obs	erval	oles			
€ĸ	α	B_K	ΔM_d	α	$f_{B_d}^2 B_{B_d}$	$\Delta \Gamma_d$	α	$(f_{B_d}B_{B_d})^2$
			$\Delta M_{\rm s}$	α	$f_{B_s}^2 B_{B_s}$	$\Delta\Gamma_{s}$	α	$(f_{B_s}B_{B_{(s)}})^2$

b-quarks on the lattice not straight forward! Reason: $m_b \approx 4 \text{GeV} \approx a^{-1}$

This causes head-aches and huge cut-off effects \rightarrow naively impossible Techniques for *b*-quarks on the lattice (separation of scales):

- static approx (leading HQET) (INF-TOV, ALPHA, ETM)
- HQET (ALPHA)
- NRQCD (HPQCD)
- relativistic heavy quark actions (Fermilab, RBC/UKQCD, PACS-CS)

Andreas Jüttner

FLAG: ϵ_K

- recent breakthrough thanks to chirally symmetric lattice actions (Domain Wall Fermions, see Taku's talk (next))
- well advanced lattice calculations, $\delta\approx 3-4\%$
- FLAG average currently being updated

NON-FLAG: $f_{B_{(s)}}$ and $B_{B_{(s)}}$

NON-FLAG: $f_{B_{(s)}}$ and $B_{B_{(s)}}$

- given it's
 - potentially huge impact
 - non-straight forward lattice computation,

 $f_{B_{\!(s)}}$ and $B_{B_{\!(s)}}$ urgently need confirmation by other (non-staggered) groups using approaches with ideally uncorrelated systematics

NON-FLAG: $f_{B_{(s)}}$ and $B_{B_{(s)}}$

- given it's
 - potentially huge impact
 - non-straight forward lattice computation,

 $f_{B_{(s)}}$ and $B_{B_{(s)}}$ urgently need confirmation by other (non-staggered) groups using approaches with ideally uncorrelated systematics

- again, cleanest would be to renormalise the operators non-perturbatively and it is very well understood how to do it
- N_f = 2 QCD and N_f = 2 + 1 QCD are different theories it is not meaningful to average results
- consecutive updates of results by one and the same collaboration are highly correlated

NON-FLAG: $K \rightarrow \pi\pi$

$\langle \pi \pi(I) | \mathcal{H}^{\mathsf{eff}} | K \rangle$

Maiani Testa: standard lattice approach will project on unphysical 2-pion state

NON-FLAG: $K \rightarrow \pi \pi$

$\langle \pi \pi(I) | \mathcal{H}^{\mathsf{eff}} | K \rangle$

Maiani Testa: standard lattice approach will project on unphysical 2-pion state current non-standard approaches allow to compute it anyway:

 indirectly via χPT RBC PRD68, (2003), CP-PACS PRD68, (2003) depends crucially on SU(3) chiral PT which turns out to converge badly repeat efforts with unphysically light strange quarks?

NON-FLAG: $K \rightarrow \pi\pi$

$\langle \pi \pi(I) | \mathcal{H}^{\text{eff}} | K \rangle$

Maiani Testa: standard lattice approach will project on unphysical 2-pion state

current non-standard approaches allow to compute it anyway:

- indirectly via χPT RBC PRD68, (2003), CP-PACS PRD68, (2003) depends crucially on SU(3) chiral PT which turns out to converge badly repeat efforts with unphysically light strange quarks?
- directly, using (partially twisted, G-parity) boundary condition tricks to project on the desired state arXiv:0912.2917
 - very feasible in $\Delta I = 3/2$ channel
 - very cost-intensive in $\Delta I = 1/2$ channel

N. Christ in his Kaon 2009 write-up arXiv:0912.2917: " $\Delta I = 1/2$, 3/2 amplitudes A_0 and A_2 with 10-20% precision within the next 2-3 years" (RBC+UKQCD)

Outlook

- Kaons:
 - well advanced calculations
 - of f_K/f_π and $f_+^{K\pi}(0)$ the latter is most likely to improve considerably in the near future
 - tremendous progress in B_K over the last years $\rightarrow \approx 4\%$ uncertainty
 - dominant uncertainties in renormalisation procedure and running
- B-physics:
 - calculations are advanced but one could do much better (clean heavy-quark discretisation, continuum limit and non-perturbative renormalisation)
 - more dedicated efforts based on different approaches are under way
 - in the near future individual results will not be produced with much improved precision

Outlook

- Kaons:
 - well advanced calculations
 - of f_K/f_π and f^{Kπ}₊(0) the latter is most likely to improve considerably in the near future
 - tremendous progress in B_K over the last years $\rightarrow \approx 4\%$ uncertainty
 - dominant uncertainties in renormalisation procedure and running
- B-physics:
 - calculations are advanced but one could do much better (clean heavy-quark discretisation, continuum limit and non-perturbative renormalisation)
 - more dedicated efforts based on different approaches are under way
 - in the near future individual results will not be produced with much improved precision
- FLAG and ALVdW started efforts to provide you with easily accessible summaries of lattice phenomenology - please make use of this service and get in touch with us if interested

Outlook

- Kaons:
 - well advanced calculations
 - of f_K/f_π and f^{Kπ}₊(0) the latter is most likely to improve considerably in the near future
 - tremendous progress in B_K over the last years $\rightarrow \approx 4\%$ uncertainty
 - dominant uncertainties in renormalisation procedure and running
- B-physics:
 - calculations are advanced but one could do much better (clean heavy-quark discretisation, continuum limit and non-perturbative renormalisation)
 - more dedicated efforts based on different approaches are under way
 - in the near future individual results will not be produced with much improved precision
- FLAG and ALVdW started efforts to provide you with easily accessible summaries of lattice phenomenology - please make use of this service and get in touch with us if interested

Lattice QCD is continously evolving and so does the quality of the results - so there is more to come

Thank you!

additional material

$\Delta S = 1, 2$ - *CP*-violation in the K-system

• indirect CP-violation ($\Delta S = 2$ Kaon mixing):

$$\epsilon_{K} = \frac{A(K_{L} \to (\pi\pi)_{I=0})}{A(K_{S} \to (\pi\pi)_{I=0})} \qquad \qquad |\epsilon_{K}|_{\text{exp.}} = 2.28(2) \times 10^{-3} \text{ (PDG 2006)}$$

• direct CP-violation ($\Delta S = 1$ non-leptonic Kaon decay)

$$\begin{aligned} A(K^0 \to \pi^+ \pi^-) &= \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} + \sqrt{\frac{1}{3}} A_2 e^{i\delta_2} \\ A(K^0 \to \pi^0 \pi^0) &= \sqrt{\frac{2}{3}} A_0 e^{i\delta_0} - \sqrt{\frac{1}{3}} A_2 e^{i\delta_2} \end{aligned}$$

(PDG 2006)

$$\Delta I = \frac{1}{2}$$
: $\omega = \frac{\text{Re}A_2}{\text{Re}A_0}$

Results for *B_K*

Aubin, Laiho, van de Water Phys.Rev.D81:014507,2010

Source uncertainty/error	uncertainty/error on B_K
statistics	1.2%
chiral & continuum extrapolation	1.9%
scale and quark-mass uncertainties	0.8%
finite volume errors	0.6%
renormalization factor	3.4%
total systematic	4.0%
total	4.2%

Results for *B_K*

Aubin, Laiho, van de Water Phys.Rev.D81:014507,2010

Source uncertainty/error	uncert	ainty/error on <mark>B</mark> K
statistics chiral & continuum extrapolation	1.2% 1.9%	$a\gtrsim 0.09 { m fm}$ $m_{ au}\gtrsim 240 { m MeV}$
scale and quark-mass uncertainties	0.8%	
finite volume errors	0.6%	
renormalization factor	3.4%	← mainly NLO running
total systematic	4.0% 4.2%	
lotai	⊣. ∠/0	

Results for $f_{+}^{K\pi}(0)$

RBC+UKQCD Phys.Rev.Lett. 100:141601,2008, arXiv:1004.0886

Source uncertainty/error	uncertainty/error on $f_{+}^{K\pi}(0)$
statistical	0.3%
chiral extrapolation	0.4%
continuum extrapolation	0.1%
total systematic	0.4%
total	0.5%

dominant uncertainty from chiral extrapolation

Results for $f_{+}^{K\pi}(0)$

RBC+UKQCD Phys.Rev.Lett. 100:141601,2008, arXiv:1004.0886

Source uncertainty/error	uncertainty/error on $f_{+}^{\kappa\pi}(0)$		
statistical chiral extrapolation continuum extrapolation	0.3% 0.4% 0.1%	\gtrsim 330MeV	
total systematic total	0.4% 0.5%		

dominant uncertainty from chiral extrapolation

Results for $f_{\mathcal{K}}/f_{\pi}$

BMW Phys.Rev.D81:054507,2010

Source uncertainty/error	uncertainty/error on f_K/f_π
statistics chiral extrapolation	0.6%
- functional form	0.3%
- pion mass range	0.3%
continuum extrapolation	0.3%
exited states	0.2%
scale setting	0.1%
finite volume	0.1%
total syst	0.5%
total	0.8%

 "dominant" uncertainties: chiral and continuum extrapolation (other collabs reach much smaller stat. error than BMW)

Results for $f_{\mathcal{K}}/f_{\pi}$

BMW Phys.Rev.D81:054507,2010

Source uncertainty/error	uncertainty/error on f_{κ}/f_{π}		
statistics chiral extrapolation	0.6%		
- functional form	0.3%		
- pion mass range	0.3%	\gtrsim 190MeV	
continuum extrapolation	0.3%	$\gtrsim 0.064 \text{fm}$	
exited states	0.2%		
scale setting	0.1%		
finite volume	0.1%		
total syst	0.5%		
total	0.8%		

 "dominant" uncertainties: chiral and continuum extrapolation (other collabs reach much smaller stat. error than BMW)

Results for f_K/f_{π}

TABLE III. Errors in % for $f_{B_s} \sqrt{\hat{B}_{B_s}}$, $f_{B_d} \sqrt{\hat{B}_{B_d}}$ and ξ .					
Source of error	$f_{B_s}\sqrt{\hat{B}_{B_s}}$	$f_{B_d} \sqrt{\hat{B}_{B_d}}$	ξ		
Stat + chiral extrap.	2.3	4.1	2.0		
Residual a ² extrap. uncertainty	3.0	2.0	0.3		
$r_1^{3/2}$ uncertainty	2.3	2.3	-		
$g_{B^*B\pi}$ uncertainty	1.0	1.0	1.0		
m_s and m_b tuning	1.5	1.0	1.0		
Operator matching	4.0	4.0	0.7		
Relativistic corr.	2.5	2.5	0.4		
Total	6.7	7.1	2.6		

HPQCD, PRD 80 014503 (2009)

TABLE V. Errors in % for f_{B_s} , f_{B_d} , and f_{B_s}/f_{B_d} .

f - /f-

Source of error

Andreas Jüttner

Critical slowing down

