

Recent results of the OPERA experiment

M. Pozzato (Bologna University and INFN) on behalf of the OPERA Collaboration

XLVI Recontres de Moriond – EW 2011

The OPERA Collaboration 170 physicists, 30 institutions in 11 countries

Belgium IIHE-ULB Brussels

Croatia IRB Zagreb

France LAPP Annecy IPNL Lyon IPHC Strasbourg

Germany Hamburg

Israel Technion Haifa

Russia INR RAS Moscow NPI RAS Moscow ITEP Moscow SINP MSU Moscow JINR Dubna

Switzerland Bern ETH Zurich

Turkey METU Ankara C*

http://operaweb.lngs.infn.it/scientists/?lang=en

Outline

Introduction The OPERA experiment Requirements CNGS neutrino beam **OPERA** detector Detector Performances Physics Results **Conclusions.**

Introduction

In the last decades several experiments provided evidence for neutrino oscillations (disappearance mode).

-CHOOZ (1997): The main oscillation channel responsible for atmospheric neutrino disappearance is not $\nu_{\mu} \rightarrow \nu_{e}$;

-SK (1998): The main oscillation channel responsible for atmospheric neutrino anomaly is not $\nu_{\mu} \rightarrow \nu_{s}$ and can be interpreted as $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillations.

-(2004-2009) K2K, MINOS precision measurments of ν_{μ} disappearance

The OPERA experiment Oscillation Project with Emulsion-tRacking Apparatus

 v_{τ} appearance from an initially pure v_{μ} high energy artificial beam through the v_{τ} CC interaction with the target mass.

Decay Channels	BR
$\tau^{-} \longrightarrow e^{-} \overline{v_{e}} v_{\tau}$	17.8%
$\tau^{-} \longrightarrow \mu^{-} \overline{\nu_{\mu}} \nu_{\tau}$	17.4%
$\tau^{-} \longrightarrow h^{-} \overline{\nu_{\tau}} (n\pi^{0})$	49.5%

Requirements

Intense high-energy long baseline muon-neutrino beam;

- Massive active target with a spatial resolution of the order of μ m;
- Detection capability of the tau-lepton production and decay
- Underground location (low backgroud)

The CNGS neutrino beam

• Protons from SPS: 400 C	eV/
---------------------------	-----

- Cycle length: 6 s
- 2 extractions separated by 50 ms
- Pulse length: 10.5 ms
- Beam intensity: 2.4 10¹³ proton/extr.

<ev<sub>µ></ev<sub>	17 GeV
$(v_e + \overline{v}_e) / v_\mu$	0.8% (*)
$\overline{\nu}_{\mu} / \nu_{\mu}$	2.1% (*)
v_{τ} prompt	Negligible (*)

(*) interaction rate at LNGS

Nominal Intesity: 4.5 10¹⁹ pot/year 5 years (nominal pot): $\sim 23600 v_{\mu} CC + NC$ $\sim 160 v_{e} + \overline{v}_{e} CC$ $\sim 110 v_{\tau} CC (\Delta m^{2} = 2.5 \ 10^{-3} \ eV^{2})$ $\sim 10 \tau$ decays are expected to be observed (BG < 1)

CNGS performaces

Year	Proton On Target	Events in the brick	Run
2006	$0.076 \mathrm{x} 10^{19}$	no bricks	Commissioning
2007	$0.082 \mathrm{x10^{19}}$	38 ev.	Commissioning
2008	1.78x10 ¹⁹	1698 ev.	First physics run
2009	3.52x10 ¹⁹	3693 ev.	Physics run
2010	4.04x10 ¹⁹ pot	4248 ev.	Physics run

9639 events collected
(within 1σ in agreement with what expected on the basis of pots)
2010 close to nominal year

2.1 nominal year in 3 years

Aim at high-intensity runs in 2011 and 2012

The OPERA detector

Strip granularity: 2.6 x 2.6 cm²

Detector elements: -Electronic detectors -Muon spectrometers -Emulsion Cloud Chamber

1 SuperModule:

-31 walls; - ~77000 bricks;

- ~620 ton.

Measured magnetic field: 1.52 T

Emulsion Cloud Chamber (ECC)

ECC: series of emulsions sheets interspaced with lead plates.

- Provide high resolution and large mass in a modular way

Brick: is the target basic component

- 57 nuclear emulsion films interleaved with 1 mm thick lead plates
- a box with a removable pair of films (Changeable Sheets) interface to the electronic detectors

Detector working principle

TT : identifies the brick with the candidate interaction

The Brick Manipulator System extracts the candidate brick from the wall

- CS developed in the cavern;

- CS measured half at LNGS half in JP (area depending on event type);
- If CS-TT tracks found \rightarrow Brick expose to Cosmic rays (12 h);
- Brick assigned to a lab for locating the neutrino interaction \rightarrow see next slides

Interaction location in ECC brick

1. Follow back in brick tracks found in CS until they disappear: vertex plate

2. Search for all track segments in volume of $1 \times 1 \text{ cm}^2 \times 15$ films around plate where scanned back tracks disappear.

3. Reject all track segments that do not form tracks or that form tracks traversing the whole volume.

Frames correspond to the scanning area in successive films. Yellow short lines \rightarrow measured tracks. Other colored lines \rightarrow interpolation or extrapolation

Electronic Detector Performances

Energy deposit in the Target Tracker

Good agreement for E>200 MeV → Under investigation the energy deposition in the low energy region.

- Overall efficiency (Trigger + reconstruction) for CC events > 97.5%
- Charge id efficiency > 96% (2.5 GeV/c < |P| < 45 GeV/c)
- Momentum resolution (MC computation): 10% at 2.5GeV/c

20% at 25 Gev/c

■ Transverse spatial resolution < 1 mm

Changeable Sheets interface between ED and ECC

ECC brick CS

-CS used to validate the brick selected by electronic detector; -Allows to go from a "scale" of the order of cm to one of the order of $\mu m \rightarrow$ see next slide

CS – Brick connection

Tracks connected are not only muons.

ECC performances

Linearity of momentum center Pion Test Beam – MC comparison

Detection of decay topologies triggered by large IP wrt primary vertex or by kink/trident topologies

Momentum resolution dependece on number of emulsion plate transversed

Soft muons momentum measured inside the brick and compared with one measured by electronic detector

Physics Results

Analysis released on 2008-2009 subsample of 1088 (187 NC) events corrisponding to 1.85 10¹⁹ POT

- Expected charm events 16.0 ± 2.9
- Expected tau events ~ 0.5

New data will be released soon

Charm Candidate events **Proof of \tau efficiency**

20 charm events selected

(3 events with 1-prong kink topology)

 ~ 2 BG events expected

Event 234654975

VERTEX 1			
	Impact Parameter		
Track 1	1,36		
Track 2	0,88		
Track 7	0,51		
X	66716,60]	
Ŷ	49892,8		
Z	90,9		

vertex

Decay

vertex

VERTEX 2					
	Impact Parameter				
Track 3	1	1,13			
Track 4	1,81				
Track 5	1,99				
Track 6	1,39				
Х	66710,10				
Ŷ	49899				
Z	403,9				

\mathbf{D}^0	Tx	Ту	Flight Length (µm)	phi	minimum mass (GeV/c²)	
	-0,0207	0,0198	313,1	173,2°	1,7	Churre

The first v_{τ} candidate

Observation of a first ν_τ candidate event in the OPERA experiment in the CNGS beam

Event number: 9234119599 taken on 22nd of August, 19:27 (UTC)

v_{τ} event recorded by the Electronic Detector

The first v_{τ} candidate

Kinematical variables

VARIABLE	Measured	Selection criteria
Kink (mrad)	41 ± 2	>20
Decay length (µ m)	1335 ± 35	Within 2 plates
P daughter (GeV/c)	12 ⁺⁶ _3	>2
Pt daughter (MeV/c)	470 ⁺²⁴⁰ -120	>300 (γ attached)
Missing Pt (MeV/c)	570 ⁺³²⁰ -170	<1000
φ (deg)	173 ± 2	>90

Event nature and invariant mass reconstruction

• The event passes all cuts, with the presence of at least 1 gamma pointing to the secondary vertex, and is therefore a candidate to the $\tau \rightarrow$ 1-prong hadron decay mode.

• The invariant mass of the two detected gammas is consistent with the π^0 mass value (see table below).

• The invariant mass of the $\pi^{-}\gamma\gamma$ system has a value (see below) compatible with that of the $\rho(770)$. The ρ appears in about 25% of the tau decays: $\tau \rightarrow \rho \ (\pi^{-}\pi^{0}) \ v_{\tau}$.

π ^o mass	ρ mass
$120 \pm 20 \pm 35$ MeV	640 +125 -80 +100 -90 MeV

Background sources

- Prompt v_{τ} :~ 10⁻⁷ / CC
- Decay of charmed particles produced in v_e interactions: ~ 10⁻⁶ / CC
- Double charm production: $\sim 10^{-6}$ / CC

Main sources:

- Decay of charmed particle produced in v_{μ} interactions (CC & NC): ~ 10⁻⁵ / CC
- Hadronic interactions (CC & NC) $\sim 10^{-5}$ / CC

Statistical significance

We observe 1 event in the 1-prong hadron τ decay channel, with a background expectation (~ 50% error for each component) of:

0.011 events (reinteractions)0.007 events (charm)

 0.018 ± 0.007 (syst) events 1-prong hadron all decay modes: 1-prong hadron, 3-prongs + 1-prong μ + 1-prong *e* :

 0.045 ± 0.020 (syst) events total BG (here we add up the errors linearly)

By considering the 1-prong hadron channel only, the probability to observe 1 event due to a background fluctuation is 1.8%, for a statistical significance of 2.36 σ on the measurement of a first v_{τ} candidate event in OPERA.

If one considers all τ decay modes which were included in the search, the probability to observe 1 event for a background fluctuation is 4.5% correspondig to a significance of 2.01 σ .

v_e observation

= 13 v_e candidate events have been observed

Compatible with v_e from beam contamination

Conclusions

- The OPERA experiment is aimed at the discovery of neutrino oscillations in appearance mode through the study of $v_{\mu} \rightarrow v_{\tau}$ channel;
- Analyzing a subsample of 2008-2009 data taking (1.85 10¹⁹ pot):
 - Decay topologies due to charmed particles observed in good agreement with expectation;
 - Events induced by v_e due to the beam contamination has been observed
 - 1 muon-less event candidate for $\tau \rightarrow$ 1-prong hadron decay topology has been detected

Spare Slides

Charm background

-Since the muon ID ~ 96% this background can be suppressed identifying the primary lepton;
For 1-prong hadronic channel 0.007 ± 0.004 (syst.) BG events are expected for the analyzed statistics

Hadronic interactions

Simulation: 160 millions event (0.5 – 15 GeV) of π⁺π⁻ K⁺ K⁻ p (imping 1 mm of lead) equivalento to 160 km of hadronic track lenght produced with FLUKA

Kink probability integrated ove the v_{μ} NC hadronic spectrum after 2 mmPb and taking into account the cuts on the event global kinematics (3.8 ± 0.2) 10⁻⁵ kink/NC

Hadronic interactions background in OPERA data:

Search for "decay-like" interactions track far from the primary vertex

No background-like interactions has been found in the signal region

 \rightarrow 90% CL upper limit of 1.54 10⁻³ kinks/NC event

π^0 mass reconstruction

γ pointing

	Distance from 2ry vertex (mm)	IP to 1ry vertex (μm) <resolution></resolution>	IP to 2ry vertex (μm) <resolution></resolution>	Prob. of attach. to 1ry vtx*	Prob. of attach. to 2ry vtx*	Attachment hypothesis
$1^{st} \gamma$	2.2	45.0 <11>	7.5 <7>	<10 ⁻³	0.32	2ry vertex
$2^{nd}\gamma$	12.6	85.6 <56>	22 <50>	0.10	0.82	2ry vertex (favored)

* probability to find an IP larger than the observed one

Pointing resolution (1σ) for a given gamma: function of scattering and distance from vertex

 γ^2 (1.2 ± 0.4 ± 0.4) GeV

1ry 2ry vertex

 $\gamma 1 (5.6 \pm 1.0 \pm 1.7) \text{ GeV}$

• Invariant mass $\gamma 1 \gamma 2$

 \rightarrow consistent with π^0

• Invariant mass $\pi^- \gamma 1 \gamma 2$ \Rightarrow consistent with $\rho(770)$ (Branching ratio $\tau \Rightarrow \rho (\pi^- \pi^0) v_{\tau} \approx 25\%)$

120 ± 20 ± 35 MeV

640 +125 -80 +100 -90 MeV

Sensitivity to Θ_{13}

Simultaneous fit on: E_e , missing p_T and visible energy

full mixing, 5 years run @ 4.5×10¹⁹ pot / year

O Signal		Background			
(deg)	$v_{\mu} \rightarrow v_{e}$	T→A	v CC	v NC	v_eCC
		μ	μ	beam	
9	9.3	4.5	1.0	5.2	18
7	5.8	4.5	1.0	5.2	18
5	3.0	4.5	1.0	5.2	18

Limits at 90% CL for $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ full mixing

	$sin^2 2\Theta_{13}$	Θ_{13}
CHOOZ	<0.14	 °
OPERA	<0.06	7.1°

Charm in data

