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The invariance of extensions of the Standard Model under the full SU(3)C ⊗SU(2)L⊗U(1)Y
gauge group can be used to classify general vector bosons and to write their interactions in
a model-independent fashion. This description is useful for both direct and indirect searches.
We comment on electroweak precision limits and show some simple applications to Higgs and
top physics.

1 General extra vector bosons and gauge invariance

New vector bosons are a common occurrence in theories beyond the Standard Model (SM).
They appear whenever the gauge group of the SM is extended, as the gauge bosons of the
extra (broken) symmetries. This is the case of Grand Unified Theories (GUT), including string
constructions, or Little Higgs models. They also occur in theories in extra dimensions, when the
gauge bosons propagate through the bulk. Strongly-interacting theories, such as technicolor,
often give rise to spin 1 resonances. This can be related to the previous possibilities via hidden
gauge symmetry or holography. Extra vector bosons are also receiving a lot of attention these
days because they are among the best candidates for an early discovery at the LHC.

It is possible to classify vector bosons according to their electric charge: neutral vector
bosons, called Z′, charge ±1 vector bosons, called W′ and vectors with other integer or fractional
charges. On the other hand, the complete theory including the new vectors must be invariant
under the full SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge group. This imposes additional restrictions
on the allowed couplings to the SM fields, and also implies that certain vectors must appear
simultaneously and have similar masses. Of course, electroweak symmetry breaking can give
rise, in some cases, to splittings in the masses of the different components of a given multiplet.
These splittings are of the order of the Higgs vacuum expectation value.

In Ref.1, Francisco del Aguila, Jorge de Blas and the author have made use of this information
to classify the new vectors into irreducible representations of the full SM gauge group, and to



Table 1: Vector bosons contributing to the dimension-six effective Lagrangian. The quantum numbers (Rc, RL)Y
denote the representation Rc under SU(3)c, the representation RL under SU(2)L and the hypercharge Y .

Vector Bµ B1
µ Wµ W1

µ Gµ G1
µ Hµ Lµ

Irrep (1, 1)0 (1, 1)1 (1,Adj)0 (1,Adj)1 (Adj, 1)0 (Adj, 1)1 (Adj,Adj)0 (1, 2)− 3
2

Vector U2
µ U5

µ Q1
µ Q5

µ Xµ Y1
µ Y5

µ

Irrep (3, 1) 2
3

(3, 1) 5
3

(3, 2) 1
6

(3, 2)− 5
6

(3,Adj) 2
3

(6̄, 2) 1
6

(6̄, 2)− 5
6

study the most general gauge-invariant Lagrangian of this class of SM extensions. Here, we will
briefly describe this formalism and show some applications.

The extra vector bosons that have been most extensively studied are neutral singlets, usually
associated to an extra abelian gauge symmetry (see, for instance, the review in Ref. 2). We will
go far beyond this particular case, and consider all the representations that could be potentially
observable by their indirect effects on precision data or their direct effects at colliders. Our main
assumption is that single production of the new vector bosons is possible, so that they have good
chances or being observed at large colliders. This requires interactions that couple SM operators
to the extra vector fields and are linear in the latter. Since all the leading contributions to elec-
troweak precision data (EWPD) arise from tree-level exchanges of just one heavy vector boson,
they are included in this analysis. The only other assumption we make is that the interactions
of these extra fields should be renormalizable by power counting, to avoid extra suppressions.
From the point of view of a low-energy effective theory, these couplings produce dimension-six
operators, while interactions with more than one new vector field in the same operator—and
nonrenormalizable interactions—give rise to operators of higher scaling dimension.

The requirement of linear renormalizable couplings, together with Lorentz symmetry and
invariance under the full SM gauge group, constrain the possible quantum numbers of the new
vectors. In Table 1, we give the quantum numbers for the 15 irreducible representations of
vector fields that can have linear and renormalizable interactions. This table also introduces the
notation for each class of vector boson, which is partly inspired by the usual notation for SM
fields. Note that the representations with nonvanishing hypercharge are complex.

These representations contain Z′ and W′ vectors, gluon-like bosons, diquarks, leptoquarks,
and other possibilities. All new vector bosons in arbitrary models are contained in this table, as
long as they can be singly produced. Note that this excludes models with R, T or KK parity.
For phenomenological purposes, it is not important whether the new vector bosons are the gauge
bosons of a broken extended gauge group or not. Nevertheless, it is interesting to note that all
the types of vector bosons in Table 1 can in principle be obtained as the gauge bosons of an
extended gauge group broken down to the SM.

To illustrate the power of the complete SM gauge invariance, as opposed to simple conserva-
tion of electric charge, let us study briefly two examples that are often included in electroweak fits
and direct searches. First, consider a pair of charged vector bosons, and assume that they have
sizable couplings to both leptons and quarks and moreover that there are no light right-handed
neutrinos. It turns out that there is only one possible vector irreducible representation with
these properties: Wµ. It couples only to the left-handed SM fermions, just as the SM SU(2)L
gauge boson. Thus, the charged components of this multiplet form a sequential W′. But these
fields necessarily come together with the neutral component of the triplet, a Z′ boson. This sim-
ple fact is usually not taken into account in collider searches, even if it is a model-independent
consequence of the SU(2)L gauge invariance of SM extensions.

As a second example, consider the case of a sequential Z′ boson, with couplings proportional



to the ones of the SM Z boson. This vector has different couplings to the two components of
the SU(2)L doublets, so it cannot be a singlet under the SM group. Nevertheless, it can arise
after electroweak symmetry breaking as a mixture of a singlet vector and the third component
of a vector in the adjoint of SU(2)L. This is the case of models with a replica of the SM gauge
group, or in extra dimensions, but the mechanism is more general. Gauge invariance implies
that the sequential Z′ boson necessarily comes together with a pair of charged vectors W′ and
another neutral vector γ′, which couples just like the photon. All these new fields have similar
masses. Clearly, these extra vectors have the very same structure as the SM gauge bosons.

Once the field content of the theory has been established, we can proceed to construct the
most general renormalizable theory invariant under SU(3)C⊗SU(2)L⊗U(1)Y . The Lagrangian
has the form

L = LSM + LV + LV−SM + nonlinear, (1)

where LSM is the SM Lagrangian, LV contains the quadratic terms for the heavy vector bosons
(with kinetic terms covariantized with respect to the SM group) and LV−SM contains the possible
interaction or kinetic terms formed as products of SM fields and a single vector field. Mass mixing
terms of SM and new vectors are forbidden by gauge invariance.a Finally, “nonlinear” in Eq. (1)
refers to interaction terms that are nonlinear in the heavy vector fields. As we have argued
above, those terms can be safely neglected.

The quadratic terms for the new vector bosons are given by

LV = −
∑
V

ηV

(
1
2
DµV

†
νD

µV ν − 1
2
DµV

†
νD

νV µ +
1
2
M2
V V
†
µV

µ

)
, (2)

The sum is over all new vectors V , which can be classified into the different irreducible represen-
tations of Table 1. We set ηV = 1 (2) when V is in a real (complex) representation, in order to
use the usual normalization. Note that we have written explicit mass terms for the new vectors.
The masses can arise, in particular, from vacuum expectation values of extra scalar fields. In
writing Eq. (2), we have chosen a basis with diagonal, canonically normalized kinetic terms and
diagonal masses. The couplings of the new vectors to the SM are described by

LV−SM = −
∑
V

ηV
2

(
V µ†JVµ + h.c.

)
. (3)

The vector currents JVµ above have the form

JVµ =
∑
k

gkV j
V k
µ , (4)

where gkV is a coupling constant and jV kµ is a vector operator of scaling dimension 3 in the
same representation as V . Actually, the different currents that can be built with the SM fields
determine the possible representations of the extra vectors. We can distinguish three kinds of
SM currents:

• With two fermions. Schematically, jV ψ1ψ2
µ = [ψ1⊗γµψ2]RV , with ψ1, ψ2 (different in prin-

ciple) fermion multiplets, RV the representation of V and ⊗ a product of representations.

• With two scalars and a covariant derivative: jV φµ = [Φ†⊗Dµφ]RV , where Φ denotes either
the scalar doublet φ or its form φ̃.

• With a gauge boson and two covariant derivatives: jAµ = DνAνµ.

aThere are, nevertheless, interactions with the Higgs doublet that give rise to mass mixing of the Z and W
bosons with the new vectors when the electroweak symmetry is broken.
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Figure 2: (Left) 95% C.L. confidence regions in the MZ′
I
-MZ′

η
parameter space from

the two-Z ′ fit with and without including the scalars ϕ and ∆ (ocher and brown solid
regions, respectively). (Right) The same in the MZ′

I
-(λ∆/M∆)−1 plane from the fit to

the Z ′
I plus the scalar ∆ (green solid region) and from the fit also including Z ′

η and ϕ
(ocher solid region).

• Z ′
R: Similar to the LR model, the limits on Z ′

R can be drastically reduced adding a
Z ′

R. Also as in the LR case, the cancellation of the purely leptonic contributions
by adding extra scalars alone leaves the limits intact. However, a significant
improvement is possible when we combine the two additions. Since the Z ′

R only
couples to RH fermions a complete cancellation of all four-fermion contributions
would be possible with the addition of the second Z ′

R and of scalar singlets
ϕ# with couplings properly chosen. For our specific choice of scalar couplings,
however, this cancellation is incomplete. Hence, we can find a 95% C.L. limit on
MZ′

R
. As can be observed by comparing Eqs. (14) and (16), a perfect cancellation

of the leptonic four-fermion operators requires that the scalar couplings satisfy
the equality

λee
ϕe

/
√

2 = λeµ
ϕµ

= λµe
ϕµ

= λeτ
ϕτ

= λτeϕτ
. (19)

In such a case there is a flat direction in the parameter space, allowing for arbi-
trary MZ′

R
values by adjusting the other extra parameters. This is illustrated in

figure 3, which is analogous to figure 1 for Z ′
χ, but with the scalar coupling choice

in (19). We must emphasize, however, that in the effective Lagrangian approach
used here the fits only makes sense for MZ′

R
above the maximum LEP 2 energies

∼ 209 GeV.

• Z ′
B−L: The limit on the Z ′

B−L mass is to a large extent determined by purely
leptonic LEP 2 data. Thus, we do not find any Z ′ that can lower this limit. On
the other hand, the addition of new scalars does allow for a MZ′

B−L
limit around

16

Figure 1: 95% C.L. regions in the MZ′
I
−MZ′

η
plane for a two-Z′ global fit with and without extra scalars φ

(singlet) and ∆ (isotriplet).

The couplings to currents of the third type induce a kinetic mixing of the SM gauge bosons A
with the heavy vectors A. It turns out that the corresponding terms in LV−SM are redundant
and can be eliminated by field redefinitions.

The currents JV for all possible vectors V and the most general couplings have been given
in Ref. 1. Let us write, as an example, the current for the vector boson B1

µ:

JB
1

µ =
(
gduB1

)
ij
diRγµu

j
R + gφB1iDµφ

T iσ2φ. (5)

We see that in this case, up to flavour indices, there are just two independent couplings: the
first one induces right-handed charged currents, while the second one gives rise to a mixing with
the SM W± boson, which modifies the ρ parameter.

The model-independent limits from EWPD on all the extra vectors have been presented in
Ref.1. On the other hand, Tevatron and LHC are placing better and better bounds on many
of the vector bosons, especially those that have sizable couplings to both quarks and leptons.
Here we shall just point out that the indirect limits can be relaxed in some cases with additional
new particles, as has been systematically discussed in Ref. 3. As an example of this, let us show
the constraints on models with two kinds of Z′ bosons that appear in E6 GUT, a Z′I and a Z′η
(see 2), plus optional extra scalar singlets φ and triplets ∆. In Fig. 1 we plot the 95% C.L.
regions, together with the electroweak and direct limits for the cases of just one Z′. We see
that the interplay of the different particles weakens the limits for individual Z′, and enlarges the
parameter space available for discovery at the LHC.

2 A few consequences of extra vector bosons

We start by discussing the implications of new vector bosons on the value of the mass of the
Higgs boson. Some of the new vectors modify the ρ parameter at tree level. In particular, the
Bµ and W1

µ representations can produce a shift that counteracts the effect of loops with a heavy
Higgs (relative to the ones with a light Higgs). In Fig. 2 we plot the value of the χ2 of a global fit
in three scenarios: the SM, an extension with a singlet Bµ and an extension with a hypercharged
triplet W1

µ. The fit includes EWPD, LEP 2 data and information from direct searches of the
Higgs boson at Tevatron. The value of χ2 over the number of degrees of freedom is comparable
in all three scenarios for a light Higgs, MH ∼ 125 GeV. However, it is clear from the figure
that for a heavy Higgs both extensions with extra vector bosons are clearly favored over the
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Figure 2: χ2 of best fit as a function of the Higgs mass MH for the SM and extensions with Bµ and W1
µ vectors.

the differences are not dramatic but in the latter our results can be quite conservative,

depending on the mass and width of the new resonance. A detailed comparison is

presented in appendix B.
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Figure 1: Allowed regions for the Tevatron tt̄ asymmetry and the tt̄ tail at LHC for a

single vector boson in each representation.

The relation between the predictions for the Tevatron tt̄ asymmetry and the tt̄

tail at LHC is tested by performing a random scan over the relevant couplings gij

corresponding to each new particle or multiplet. The results for the ten vector boson

representations are presented in Fig. 1. (For B1
µ, G1

µ, Q1
µ and Y1

µ the regions are one-

dimensional because there is only one coupling involved.) There are several interesting

conclusions which can be drawn from these plots:

8

Figure 3: Allowed regions for the Tevatron tt̄ asymmetry and the tt̄ tail at LHC for heavy Bµ and Wµ bosons.

SM hypothesis. In other words, if a heavy Higgs boson were found at the LHC, it would be an
indication of physics beyond the SM, possibly in the form of new vector bosons Bµ or W1

µ.
Let us now move to the possible impact of extra vector bosons in top physics. Tevatron

and the LHC are studying in great detail the pair production of top quarks. Interestingly, the
CDF collaboration has measured a value of the tt̄ forward backward asymmetry AFB (at high
invariant mass) that is more than three sigmas away from the SM prediction 4. Having a look
at Table 1 and at the couplings in Ref. 1, it is easy to see that the vector bosons contributing to
top pair production are:

• Bµ, Wµ, Gµ and Hµ, in the s and/or t channels;

• B1
µ, G1

µ, in the t channel;

• Q1
µ, Q5

µ, Y1
µ and Y5

µ, in the u channel.

All of these vector bosons, except Y1
µ and Y1

µ, could give rise to the observed excess. However,
this is not that simple, as there are important constraints as well. The more robust ones arise
from tt̄ production itself: the total cross section and its distribution as a function of the invariant
mass. In Ref. 5, Juan Antonio Aguilar-Saavedra and the author have studied the effect of these
vector bosons (and also of general scalars) over the tail in tt̄ production at high invariant masses
at the LHC. The result is that, with the exception of very light particles or particular couplings
in the case of a gluon-like vector G, these explanations of the excess in AFB can be ruled out by



LHC data with the luminosity already collected. In Fig. 3 we show, for example, the relation
between the predictions for AFB and the LHC tail for the case of heavy Bµ and Wµ vector
bosons. The different points scan all the allowed values of the couplings of these vector bosons
to the t, u and d quarks.

3 Conclusions

Many beautiful models incorporating new physics have been constructed in the last thirty years,
guided by different theoretical problems of the SM. We do not know which, if any, of these
theories is realized in our Universe. Therefore, now that the LHC is running—and performing
extremely well!—it seems wise not to trust particular models, but carry out model independent
analyses of new physics. These studies can guide the experimental searches and give shape to
the constraints. The most general model-independent formalism, effective Lagrangians, is not
valid when the new particles can be produced. We advocate instead a scan over all possible
particles that can give observable effects, allowing for completely general couplings. This is not
an impossible mission once the possibilities are strongly restricted by the principles of gauge
invariance and power counting. The result is a natural and convenient parameterization from
both the theoretical and experimental points of view. In this talk, we have illustrated this
program for the case of extra spin 1 particles.
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1. F. del Aguila, J. de Blas and M. Pérez-Victoria, JHEP 1009, 033 (2010).
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