Z' Bosons and Friends

Manuel Pérez-Victoria

University of Granada & CAFPE

with Francisco del Aguila, Jorge de Blas and Paul Langacker JHEP 1009, 033 (2010) + UG-FT-285/11, CAFPE-155/11 and with Juan Antonio Aguilar Saavedra hep-ph/today

Outline

- General extra vector bosons: a model-independent description
- Electroweak limits
- Consequences: Higgs and tt FB asymmetry
- Direct searches

General Extra Vector Bosons

• New spin 1 particles (often gauge bosons, but no necessarily)

• GUT, Xdims, Technicolor, Little Higgs, ...

• Candidates for early discovery at LHC

 Constrained by electroweak precision tests, direct searches and flavour

General Extra Vector Bosons

Model independent description

F. del Aguila, J. de Blas, MPV, 2010

Use full SU(3)xSU(2)xU(1) gauge symmetry Simple, general and convenient parameterization

My (mild) **Assumption** in this talk: Single production is possible (No R/T/KK parity)

All Types of Extra Vectors

Vector	${\cal B}_{\mu}$	${\cal B}^1_\mu$	${\cal W}_{\mu}$	\mathcal{W}^1_μ	${\cal G}_{\mu}$	${\cal G}^1_\mu$	${\cal H}_{\mu}$	${\cal L}_{\mu}$
Irrep	$(1, 1)_0$	$(1, 1)_1$	$(1, \mathrm{Adj})_0$	$(1, \mathrm{Adj})_1$	$(\mathrm{Adj},1)_0$	$(\mathrm{Adj},1)_1$	(Adj, Adj) ₀	$(1,2)_{-rac{3}{2}}$
Vector	${\cal U}_{\mu}^2$	${\cal U}^5_\mu$	${\cal Q}^1_\mu$	${\cal Q}^5_\mu$	\mathcal{X}_{μ}	${\cal Y}^1_\mu$	${\cal Y}^5_\mu$	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \mathrm{Adj})_{rac{2}{3}}$	$\left(\overline{6},2 ight)_{rac{1}{6}}$	$\left(\overline{6},2 ight)_{-rac{5}{6}}$	

Electroweak breaking:

 $\mathcal{B}^{1} \implies \text{Pair of Charged vectors}$ $\mathcal{W} \implies \begin{cases} \text{One neutral vector +} \\ \text{Pair of Charged vectors} \end{cases}$

Z		A V'	II Type	es of E	xtra Ve	ctors		
Vector	${\cal B}_{\mu}$	${\cal B}^1_\mu$	\mathcal{W}_{μ}	\mathcal{W}^1_μ	${\cal G}_{\mu}$	${\cal G}^1_\mu$	${\cal H}_{\mu}$	${\cal L}_{\mu}$
Irrep	$(1,1)_{0}$	$(1,1)_{1}$	$(1, \mathrm{Adj})_0$	$(1, \mathrm{Adj})_1$	$(\mathrm{Adj},1)_0$	$(\mathrm{Adj},1)_1$	(Adj, Adj) ₀	$(1,2)_{-rac{3}{2}}$
Vactor	1 12	1 15	O^1	O^5	V	_ 1	<u>1,5</u>	
vector	\mathcal{U}_{μ}	\mathcal{U}_{μ}	\mathcal{Q}_{μ}	\mathcal{Q}_{μ}	λ_{μ}	\mathcal{Y}_{μ}	\mathcal{Y}_{μ}	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{\frac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, Adj)_{\frac{2}{3}}$	$(6,2)_{\frac{1}{6}}$	$(6,2)_{-rac{5}{6}}$	
								Contraction of the

	and the second			and the second second						
	All Types of Extra Vectors Leptophilic									
		Higgs	philic		ladrophil	ic color	octets			
Vector	${\cal B}_{\mu}$	${\cal B}^1_\mu$	${\cal W}_{\mu}$	\mathcal{W}^1_μ	${\cal G}_{\mu}$	${\cal G}^1_\mu$	${\cal H}_{\mu}$	\mathcal{L}_{μ}		
Irrep	$(1, 1)_0$	$(1,1)_{1}$	$(1, \mathrm{Adj})_0$	$(1, \mathrm{Adj})_1$	$(Adj, 1)_0$	$(\mathrm{Adj},1)_1$	(Adj, Adj) ₀	$(1,2)_{-\frac{3}{2}}$		
Vector	${\cal U}_{\mu}^2$	${\cal U}^5_\mu$	${\cal Q}^1_\mu$	${\cal Q}^5_\mu$	\mathcal{X}_{μ}	${\cal Y}^1_\mu$	${\cal Y}^5_\mu$			
Irrep	$(3,1)_{rac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \mathrm{Adj})_{rac{2}{3}}$	$\left(\overline{6},2 ight) _{rac{1}{6}}$	$\left(\overline{6},2 ight)_{-rac{5}{6}}$			
							の、長少の言			

All Types of Extra Vectors

No. And States

S. Lot 2

Vector	${\cal B}_{\mu}$	${\cal B}^1_\mu$	${\cal W}_{\mu}$	${\cal W}^1_\mu$	${\cal G}_{\mu}$	${\cal G}^1_\mu$	${\cal H}_{\mu}$	${\cal L}_{\mu}$
Irrep	$(1, 1)_0$	$(1, 1)_1$	$(1, \mathrm{Adj})_0$	$(1, \mathrm{Adj})_1$	$(\mathrm{Adj},1)_0$	$(\mathrm{Adj},1)_1$	$(\mathrm{Adj},\mathrm{Adj})_0$	$(1,2)_{-\frac{3}{2}}$
Vector	\mathcal{U}^2_μ	${\cal U}^5_\mu$	\mathcal{Q}^1_μ	${\cal Q}^5_\mu$	${\cal X}_{\mu}$	${\cal Y}^1_\mu$	${\cal Y}^5_\mu$	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \mathrm{Adj})_{\frac{2}{3}}$	$\left(ar{6},2 ight)_{rac{1}{6}}$	$(\overline{6},2)_{-\frac{5}{6}}$	
	L	eptoqu	arks		Hadrop	hilic colo	or sextets	
W. F	Buchuller	, R. Rucl	kl, D. Wyle	er, 1987				

All Types of Extra Vectors

Vector	${\cal B}_{\mu}$	${\cal B}^1_\mu$	\mathcal{W}_{μ}	\mathcal{W}^1_μ	${\cal G}_{\mu}$	${\cal G}^1_\mu$	${\cal H}_{\mu}$	${\cal L}_{\mu}$
Irrep	$(1, 1)_0$	$(1, 1)_1$	(1, Adj) ₀	$(1, \mathrm{Adj})_1$	$(\mathrm{Adj},1)_0$	$(\mathrm{Adj},1)_1$	(Adj, Adj) ₀	$(1,2)_{-rac{3}{2}}$
Vector	${\cal U}_{\mu}^2$	${\cal U}^5_\mu$	\mathcal{Q}^1_μ	${\cal Q}^{\sf 5}_{\mu}$	\mathcal{X}_{μ}	${\cal Y}^1_\mu$	${\cal Y}^5_\mu$	
Irrep	$(3,1)_{\frac{2}{3}}$	$(3,1)_{rac{5}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{-\frac{5}{6}}$	$(3, \mathrm{Adj})_{rac{2}{3}}$	$\left(\overline{6},2\right)_{rac{1}{\overline{6}}}$	$\left(\overline{6},2 ight)_{-rac{5}{6}}$	

Quantum numbers determine possible couplings. For instance,

$$\mathcal{L} \supset \mathcal{B}^{1}_{\mu} \left[\left(g^{du}_{\mathcal{B}^{1}} \right)_{ij} \overline{d^{i}_{R}} \gamma^{\mu} u^{j}_{R} + g^{\phi}_{\mathcal{B}^{1}} i D^{\mu} \phi^{T} i \sigma_{2} \phi \right]$$

Example: Sequential Z'

Many collider searches use as a reference model the sequential Z', with the same couplings as the Z boson.

But it cannot be any of the irreps above! (it breaks $SU(2)_{I}$ gauge invariance)

Does it make any sense?

Example: Sequential Z'

Many collider searches use as a reference model the sequential Z', with the same couplings as the Z boson.

It can only arise as a mixture of an isosinglet \mathcal{B} and and isotriplet \mathcal{W} (after electroweak symmetry breaking)

Sequential Z'comes together with a γ' and a W'

Impact on EW precision tests

Vector	$\left \begin{array}{c} Z\\ e^+e^-\end{array}\right $	pole $I \rightarrow \bar{f}f$	M_W (CKM	ν -N DIS	$\frac{NC}{\nu e \to \iota}$	APV ve	$\begin{array}{c} \text{PV is}\\ e^-e^- \rightarrow \end{array}$	n LE $e^-e^- e^+e^-$	$\begin{array}{l} \text{CP } 2 \\ \rightarrow ar{f}f \end{array}$
\mathcal{B}_{μ}										1
\mathcal{W}_{μ}		f			$\nearrow f'$			Φ^{\dagger}	Φ^{\dagger}	120
${\cal G}_{\mu}$			V^{μ}				W^a_μ, B_μ	V^{μ}	W^a_μ, B_μ	
\mathcal{H}_{μ}			\sim	$\mathbf{\mathbf{k}}$			\sim			1
\mathcal{B}^1_μ								 	 	
\mathcal{W}^1_μ	R Lad	\overline{f}			$\overline{f'}$			$\overset{\scriptscriptstyle \mathrm{I}}{\overset{\scriptscriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}}\phi$	$\overset{\scriptscriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}{\overset{\scriptstyle \mathrm{I}}}}{\overset{\scriptstyle \mathrm{I}}}}{{\overset{I}}}{\overset{\scriptstyle \mathrm{I}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	
\mathcal{G}_{μ}^{1}			Four ferm	ion				Oblique		CONTRACT.
\mathcal{L}_{μ}					â			Oblique		1.128
\mathcal{U}_{μ}^{2}	4997.046				f		Φ^{\dagger}			
\mathcal{U}^{0}_{μ}						V^{μ}	W^a_μ, B_μ			
\mathcal{Q}^{1}_{μ}										
$\mathcal{Q}^{\circ}_{\mu}$	12E3-1				_		 			
\mathcal{X}_{μ}					f		ϕ			
\mathcal{Y}_{μ} χ^{5}						Trilinear				
${\cal Y}_{\mu}$										

Limits on General Extra Vectors $G \sim \frac{g}{M}$

Vector V_{μ}	$-\Delta\chi^2_{ m min}\ (\chi^2_{ m min}/{ m d.o.f.})$	Parameter $G_V^k \equiv g_V^k / M_V$	Best Fit $[\text{TeV}^{-1}]$	Bounds $[\text{TeV}^{-1}]$	C.L.
\mathcal{B}_{μ}	7.35 (0.77)	$egin{aligned} G^{\phi}_{\mathcal{B}} \ G^{l}_{\mathcal{B}} \ G^{q}_{\mathcal{B}} \ G^{e}_{\mathcal{B}} \ G^{u}_{\mathcal{B}} \ G^{d}_{\mathcal{B}} \ G^{d}_{\mathcal{B}} \end{aligned}$	-0.045 0.021 -0.89 0.048 -2.6 -6.0	$\begin{bmatrix} -0.098, & 0.098 \\ [-0.210, & 0.210 \end{bmatrix}$ $\begin{bmatrix} -0.300, & 0.300 \end{bmatrix}$	95% 95% - 95% -
\mathcal{W}_{μ}	$1.51 \\ (0.79)$	$egin{array}{l} G^{\phi}_{\mathcal{W}} \ G^{l}_{\mathcal{W}} \ G^{q}_{\mathcal{W}} \end{array}$	$\begin{array}{c} 0.002 \\ 0.004 \\ -9.6 \end{array}$	$\begin{bmatrix} -0.12, & 0.12 \end{bmatrix} \\ \begin{bmatrix} -0.26, & 0.26 \end{bmatrix} \\ -$	$\frac{1}{95\%}$
\mathcal{B}^1_μ	0.16 (0.79)	$egin{array}{l} G^{\phi}_{\mathcal{B}^1} \ G^{du}_{\mathcal{B}^1} \end{array}$	$6 \cdot 10^{-4}$ 6.6	[-0.11, 0.11]	95% -
\mathcal{W}^1_μ	$0.65 \\ (0.78)$	$ G^{\phi}_{\mathcal{W}^1} $	0.18	< 0.50	95%
\mathcal{L}_{μ}	$0 \\ (0.79)$	$ G^{el}_{\mathcal{L}} $	0	$< \left(\begin{array}{rrrr} 0.29 & 0.33 & 0.39 \\ 0.34 & - & - \\ 0.39 & - & - \end{array}\right)$	95%

Lin	nits on G	eneral Ex	ktra V	Vectors $G \sim \frac{g}{M}$
\mathcal{U}^2_μ	0 (0.79)	$ G^{ed}_{\mathcal{U}^2} $	0	$< \begin{pmatrix} 0.21 & 0.49 & 0.49 \\ - & - & - \\ - & - & - \end{pmatrix}$ 95%
		$ G^{lq}_{\mathcal{U}^2} $	0	$< \left(\begin{array}{cccc} 0.12 & 0.29 & 0.29 \\ 0.56 & 0.65 & - \\ - & - & - \end{array}\right) 95\%$
\mathcal{U}^5_μ	≤ 2.77 (0.77)	$ G^{eu}_{\mathcal{U}^5} $	$0.43 \\ [1,2]$	$< \begin{pmatrix} 0.25 & 0.62 & - \\ - & - & - \\ - & - & - \end{pmatrix}$ 95%
\mathcal{Q}^1_μ	≤ 0.45 (0.79)	$ G^{ul}_{\mathcal{Q}^1} $	$0.27 \\ [1,2]$	$< \left(\begin{array}{cccc} 0.22 & 0.54 & -\\ 0.57 & - & -\\ - & - & - \end{array}\right) \qquad 95\%$
\mathcal{Q}^5_μ	≤ 3.36 (0.78)	$ G^{dl}_{\mathcal{Q}^5} $	0.87 $[1, 1]$	$< \left(\begin{array}{cccc} 1.06 & 0.58 & -\\ 1.07 & - & -\\ 1.07 & - & - \end{array}\right) \qquad 95\%$
		$ G^{eq}_{\mathcal{Q}^5} $	0.64 $[1, 1]$	$< \begin{pmatrix} 0.78 & 1.0 & 1.2 \\ - & - & - \\ - & - & - \end{pmatrix}$ 95%
\mathcal{X}_{μ}	≤ 2.86 (0.77)	$ G^{lq}_{\mathcal{X}} $	0.65 $[1, 2]$	$< \left(\begin{array}{cccc} 0.27 & 0.93 & 0.57 \\ 1.04 & 1.40 & - \\ - & - & - \end{array}\right) 95\%$

Popular Z' Models

	95% C.L. Electroweak Limits on									
	\sin	$\theta_{ZZ'} \left[\times 10^{-4} \right]$			$M_{Z'}$ [TeV]					
Model	EWPD (no LEP 2)	LEP 2	All Data		EWPD (no LEP 2)	LEP 2	All Data			
Z'_{χ}	[-10, 7]	[-80, 118]	[-11, 7]		1.123	0.772	1.022			
Z'_ψ	[-19, 7]	[-196, 262]	[-19, 7]		0.151	0.455	0.476			
Z'_η	[-22, 25]	[-150, 164]	[-23, 27]		0.422	0.460	0.488			
Z'_I	[-5, 9]	[-144, 96]	[-5, 10]		1.207	0.652	1.105			
Z'_N	[-14, 6]	[-165, 223]	[-14, 6]		0.635	0.421	0.699			
Z'_S	$[-\hspace{0.15cm}9,\hspace{0.15cm}5]$	[-85, 129]	[-10, 5]		1.249	0.728	1.130			
Z'_R	$\begin{bmatrix} -17, & 7 \end{bmatrix}$	[-166, 177]	[-15, 5]		0.439	0.724	1.130			
Z'_{LR}	[-13, 5]	[-147, 189]	[-12, 4]		0.999	0.667	1.162			

Consequences for/from Higgs Mass

Vector singlet and fermiophobic vector triplet

Mixing with Z (and W)

Shift of masses

Positive T parameter

How robust are EW limits?

F. del Aguila, J. de Blas, P. Langacker, MPV, 2011 (to appear)

Assume there are special additional vectors and/or scalars

tt asymmetry vs tail cross section

J.A. Aguilar-Saavedra, MPV, 2011 (today)

 \mathcal{B}_{μ}^{1}

$t\bar{t}$ asymmetry vs tail cross section

J.A. Aguilar-Saavedra, MPV, 2011 (today)

0.2

Collider searches/limits

EW limits depend on the ratio g/M
 Direct collider limits have different dependence on g and M

Assuming couplings of electroweak strength,

Z' hadron collider limits:

Z' EWPT limits (without cancellations)

• Tevatron: $M_{Z'} \gtrsim 1.0 \text{ TeV}$ D0, 5.4fb⁻¹, 1.96 TeV

• LHC: $M_{Z'} \gtrsim 1.14 \text{ TeV}$ CMS, 40pb^{-1} , 7 TeV $M_{Z'}\gtrsim 600-1600\,{\rm GeV}$

LHC searches/limits

EW limits depend on the ratio g/M
 Direct collider limits have different dependence on g and M

Assuming couplings of electroweak strength,

W' hadron collider limits:

W' EWPT limits (without cancellations)

• Tevatron: $M_{W'} \gtrsim 1.1 \text{ TeV}$ CDF, 5.3 fb⁻¹, 1.96 TeV

• LHC: $M_{W'} \gtrsim 1.58 \,{
m TeV}$ CMS, $36 \,{
m pb}^{-1}$, 7 TeV $M_{\mathcal{W}} \gtrsim 2.5 \,\mathrm{TeV}$

Conclusions

New particles can be classified into irreps of SM *full* gauge symmetry

With mild assumptions, explicit model independent Lagrangians can be written.

Simple parametrization
 Direct contact with models and collider physics

Similar analysis with general extra leptons in F. del Aguila, J. de Blas, MPV, 2008

