Diboson results from the Tevatron

Martina Hurwitz, Lawrence Berkeley National Laboratory

On behalf of the D0 and CDF collaborations

Motivations for diboson physics

- Test of Standard Model
 - SM provides precise predictions of diboson production cross sections
- New physics can enhance diboson production
 - Enhancement of triple gauge couplings (TGCs)
 - Resonances decaying to pairs of bosons
- Measurement of SM diboson production is important step in hunt for Higgs boson
 - $H \rightarrow WW / H \rightarrow ZZ$: Higgs can decay to dibosons
 - Associated WH / ZH production: also diboson events

Diboson production cross sections

Process	D0 measurement [pb]	CDF measurement [pb]	NLO prediction [pb]
WW	11.5 ± 2.2	$12.1^{+1.8}_{-1.7}$	$11.34_{-0.55}^{+0.66}$
WZ	$3.90^{+1.06}_{-0.90}$	4.1 ± 0.7	$3.22_{-0.19}^{+0.23}$
ZZ	$1.35_{-0.43}^{+0.52}$	$1.56^{+0.84}_{-0.68}$	1.4 ± 0.1

(Different measurements use different integrated luminosities, between 1 and 6 fb⁻¹)

WW/WZ/ZZ decays accessible at Tevatron

- Fully leptonic modes: both bosons decay leptonically (W → lv, Z → ll, Z → vv)
- Low branching fractions
- Presence of multiple charged leptons → low backgrounds from QCD processes
- Usually charged leptons are electrons and muons, taus are not explicitly identified, but tau decaying to electron or muon is part of signal

- Semileptonic modes: one of bosons decays hadronically
 - $(\mathsf{W} \to \mathsf{q}\mathsf{q},\,\mathsf{Z} \to \mathsf{q}\mathsf{q})$
- Larger branching fractions
- Still have something leptonic to trigger on, but much larger backgrounds from W/Z+jets
- W → qq cannot be separated from Z → qq b/c of limited resolution in reconstructing hadronic jets
 - Measure sum of processes, e.g. WW+WZ → Ivqq

Dibosons and the Higgs

• Sensitive Higgs search channels at the Tevatron:

$ZZ \rightarrow \parallel \parallel$

- Two pairs of opposite-sign, same flavor leptons \rightarrow very clean signature
- First observation of ZZ in 2008 with three four-lepton events
- Now in 6.4 fb⁻¹
 - Expect \sim 9 signal events, \sim 0.4 BG events
 - **Observe 10 events**

 $\sigma(ZZ) =$

 $1.35^{+0.52}_{-0.43}$

$ZZ \rightarrow ||||$

- In 4.8 fb⁻¹, expect ~5 signal events, ~0.04 BG events
- Observe 5 events
- $\sigma(ZZ) = 1.56^{+0.84}_{-0.68}$ pb

$ZZ \rightarrow IIvv$

- $Z \rightarrow I^{\dagger}I^{\bullet}$ plus high MET
 - Not as clean as Z → IIII: background from Drell-Yan production
- To reduce D-Y background, require MET to be back-to-back with Z boson in transverse plane
- 5.9 fb⁻¹
 - Expect ~50 signal events
 - Expect ~1100 BG events
 - Observe 1162 events
- Use neural network to separate signal and background
- $\sigma(ZZ) = 1.45^{+0.92}_{-0.87}$

MetAx

$WZ \rightarrow |v||$

- Signature: three isolated, high- p_{τ} leptons with MET
- Build Z from two opposite-sign, same-flavor leptons, require invariant mass to be close to Z mass

- In 6 fb⁻¹, ~50 signal and ~11 BG events
- $\sigma(WZ) = 4.1 \pm 0.7 \text{ pb}$

$WZ \rightarrow IvII (D0)$

- In 4.1 fb⁻¹, expect ~23 signal and ~6 BG events, observe 34
- $\sigma(WZ) = 3.90^{+1.06}_{-0.90}$ pb
- Use p₁ of Z boson to set limit on aTGCs: best limit from direct measurement of WWZ vertex

$WW \rightarrow |v|v$

- Signature: two opposite-sign, isolated, high-p₁ leptons and large MET
- Major BGs from Drell-Yan, Wγ, W+jets
- D0: count events, combine ee eµ and µµ channels
 - ~65 signal, ~40 BG
 events in 1 fb⁻¹
 - $-\sigma(WW) = 11.5 \pm 2.2 \text{ pb}$

- CDF: matrix element probabilities to separate signal and BG
 - ~300 signal, ~300 BG events (3.6 fb⁻¹)

PRL 104, 201801 (2010)

$W\gamma \rightarrow \mu \nu \gamma$

- High-p₁ isolated muon, high MET, and photon
 - Use neural network to optimize separation between photons and hadronic jets
- Expect ~750 signal events, ~270 BG events
 - BG mostly due to W+jets with jet faking a photon
- Set limits on TGCs using E_{τ}^{γ} comparable with LEP's

ALEPH	$-0.1 < \Delta \kappa_{\gamma} < 0.029$	$-0.043 < \lambda_{\gamma} < 0.014$
L3	$-0.049 < \Delta \kappa_{\gamma} < 0.095$	$-0.062 < \lambda_{\gamma} < 0.019$
OPAL	$-0.1 < \Delta \kappa_{\gamma} < 0.018$	$-0.097 < \lambda_{\gamma} < -0.024$
LEP2 combined	$-0.072 < \Delta \kappa_{\gamma} < 0.017$	$-0.049 < \lambda_{\gamma} < 0.008$
DØ 4.2 fb^{-1}	$-0.07 < \Delta \kappa_{\gamma} < 0.07$	$-0.012 < \lambda_{\gamma} < 0.011$

Preliminary result

$WZ+ZZ \rightarrow MET+bb$ (CDF)

- WW+WZ+ZZ → MET+jets observed and measured in 2009
 - Two jets and large MET
 → developed smart
 ways to reduce
 multijet background
 and model W+jets

- Add b-tagging: sensitive only to WZ+ZZ
 - Smaller signal cross section
 - B-tagging → smaller signal acceptance
 - Very similar to situation in Higgs searches
 - sigma(WZ+ZZ) = $5.0^{+3.6}_{-2.5}$ pb

$WW+WZ \rightarrow Ivjj$

- One trigger lepton, two jets and MET \rightarrow large W+jets background
- Challenge is to separate signal and BG; model BG well

$ZW+ZZ \rightarrow IIjj$

- 2 electrons or muons from Z decay, two jets, low MET
 - Major background is from Z+jets
- In 4.8 fb⁻¹, expect ~202 signal events, ~13000 BG events
- Neural network used for discrimination
 - Includes variables to separate quark and gluon jets
- Analysis not yet sensitive enough to find signal
 - Expect and observe ~1σ deviation from BG-only hypothesis

Preliminary result

Combined WWy / WWZ limit

- Combine four measurements
 - $W\gamma \rightarrow Iv\gamma: p_{T}(\gamma)$
 - WW \rightarrow IvIv: $p_T(l_1)$ vs $p_T(l_2)$
 - WZ → IvII: $p_{T}(Z)$
 - _ WW/WZ → Ivjj: $p_{T}(jj)$
- Best limits from hadronic collider

Results respecting $SU(2)_L \otimes U(1)_Y$ symmetry						
Parameter	Minimum	68% C.L.	95% C.L.			
$\Delta \kappa_{\gamma}$	0.07	[-0.13, 0.23]	[-0.29, 0.38]			
Δg_1^Z	0.05	[-0.01, 0.11]	[-0.07, 0.16]			
λ	0.00	[-0.04, 0.05]	[-0.08, 0.08]			
μ_W	2.02	[1.93, 2.10]	[1.86, 2.16]			
q_W	-1.00	[-1.09, -0.91]	[-1.16, -0.84]			
Results for equal-couplings						
Parameter	Minimum	68% C.L.	95% C.L.			
$\Delta \kappa$	0.03	[-0.04, 0.11]	[-0.11, 0.18]			
λ	0.00	[-0.05, 0.05]	[-0.08, 0.08]			
μ_W	2.02	[1.94, 2.09]	[1.88, 2.15]			
q_W	-1.02	[-1.09, -0.94]	[-1.16, -0.87]			

arXiv:0907.4952v2

Conclusions

- Diboson measurements are rich area of physics
 - Careful probe of standard model
 - Stepping-stone to finding Higgs boson
- Many exciting results from the Tevatron
 - Precise cross section measurements
 - Stringent limits on TGCs
 - Searches and measurements in difficult topologies
- So far, see excellent agreement with Standard Model
 - Across experiments, decay modes, and analysis styles
- Still room for improvement!
 - Many analyses done with $\sim 1/2$ of full Tevatron dataset
 - Combinations of analyses and experiments
 - Employ sophisticated analysis techniques similar to those used in Higgs searches