Exotic Searches at ATLAS

Doug Gingrich (University of Alberta/TRIUMF) on behalf of the ATLAS Collaboration

Searches

Concentrate on five searches (last three analyses based on full 2010 data set):

- Highly ionising particles.
- Diphoton events with large missing transverse energy (universal extra dimensions).
- Searches for new physics in dijets (update of Phys. Rev. Lett. 105 (2010) 161801 and Phys. Lett. B694 (2011) 327).
- High-mass states with lepton plus missing transverse energy (W'/W*).
- High-mass dilepton resonances (Z').

Long-Lived Highly Ionising Particles

- Search for massive long-lived highly ionising particles (HIP).
 - <u>http://arxiv.org/abs/1102.0459</u> (submitted to Phys. Lett. B)
- Examples that give rise to highly ionizing particle signatures are Q-balls, black hole remnants, magnetic monopoles, and dyons.
- We present a model independent search.
- Due to large mass, HIPs also characterised by their non-relativistic speeds, as well as, high electric charge.
- Expect large amounts of energy loss through ionisation.
- In ATLAS:
 - leave tracks in inner tracking detector, matched to
 - narrow energy loss in electromagnetic calorimeter.

Long-Lived Highly Ionising Particles (2)

- Accessible parameter space:
 - $|q| \ge 6e$ bound determined by $E_T > 10$ GeV trigger threshold.
 - $|q| \leq 17e$ bound determined by delta electrons and electron recombination.
 - mass < 1000 GeV bound determined by trigger timing constraints.
 - Lifetimes > 100 ns to maintain narrow energy deposit.
- Data luminosity 3.1 pb⁻¹.

Long-Lived Highly Ionising Particles (3)

- Discriminate by proportion of highionisation hits and lateral extent of energy deposition.
 - Fraction of TRT hits on the track which pass a high threshold: f_{HT}.
 - Fraction of energy outside the three most energetic cells associated to a selected EM cluster, in the second EM calorimeter layer: w₂.
- Data matches Standard Model Monte Carlo.
- No such particles are found.
- Estimated background 0.019 ± 0.005 events.
- Limits for particles produced in the acceptance kinematic region
- HIP masses above 800 GeV probed for the first time at particle colliders (Europhys. Lett. 12 (1990) 613).

Inclusive HIP cross section upper limits (95% CL)

m (GeV)	q = 6e	q = 10e	q = 17e
200	1.4 pb	1.2 pb	2.1 pb
500	1.2 pb	1.2 pb	1.6 pb
1000	2.2 pb	1.2 pb	1.5 pb

Diphoton with Large Missing Energy

- Diphoton ($\gamma\gamma$) events with large missing energy (E_T^{miss}).
 - <u>http://arxiv.org/abs/1012.4272</u> (accepted by Phys. Rev. Lett.)
- Interpret in context of Universal Extra Dimension (UED) model.
- Consider single TeV⁻¹ sized UED, with compactification radius R.
- Lightest Kaluza-Klein (KK) particle (LKP) is KK photon γ^* .
- Strong pair production of KK quarks and/or gluons.
- Decay down via KK states to LKP.
- LKP decays by $\gamma^* \rightarrow \gamma + G$.
- Use model in which ΛR = 20, Λ is UV cutoff and R free parameter.

Diphoton with Large Missing Energy (2)

- Two photons with $E_T > 25$ GeV and event $E_T^{miss} > 75$ GeV.
- Zero observed events, estimated background 0.32 ± 0.16 + 0.37 0.10 events.
- In context of previous specified model, values of 1/R < 728 GeV are excluded.
- Most sensitive limit on this model to date
 - 1/R < 477 GeV, DØ experiment, Phys. Rev. Lett. 105 (2010) 221802.

New Physics in Dijets

- Study both dijet invariant mass of final state and angular distributions of energetic jets up to 3.5 TeV.
- p_T^{J1} > 150 GeV,
 p_T^{J2} > 30 GeV.
- |Δη_{jj}|< 1.3 (mass spectrum only).
- Invariant mass distribution found to be smooth, in agreement with SM.

Angular Distributions

- $p_T^{J1} > 60 \text{ GeV}, p_T^{J2} > 30 \text{ GeV}.$
- $y_{B} = 0.5 (y_{1} + y_{2}) < 1.10$
- $y^* = 0.5 (y_1 y_2) < 1.70$
- Data consistent with QCD.

 $\chi = \exp(|y_1 - y_2|) = \exp(2|y^*|)$

Theoretical Uncertainties

ATLAS Preliminary

 $\chi = e^{|y_1 - y_2|}$

10

Total Systematics

Dijet centrality

0.2

0.15

0.1

0.05

Doug Gingrich (Moriond EW-11)

Excited Quarks and Axigluon

- Excited quarks production: $q g \rightarrow q^*$.
- Excited quark decay: $q^* \rightarrow qg$, $qW/Z/\gamma$.

Resonance search

- Excited quark: 0.60 < m < 2.15 TeV.
- Axigluon: 0.60 < m < 2.10 TeV.

$Q = -2[\ln L(F_{\chi}(m_{jj}) | H0) - \ln L(F_{\chi}(m_{jj}) | H1)]$

HO null hypothesis (QCD only), H1 hypothesis for new physics.

Angular distribution analysis

Excited quark: 0.60 < m < 2.64 TeV.

15 March 2011

Doug Gingrich (Moriond EW-11)

Quantum Black Holes (QBH)

- Dijet decays of black holes:
 - M_D = higher dimensional Planck scale, n = number of extra dimension.
- Large threshold effect with long tails to higher masses.

Resonance search

• Exclude 0.75 < M_D < 3.67 TeV.

Angular distribution analysis

- $dN/d\chi$ distribution: Exclude M_D < 3.69 TeV.
- $F_{\chi}(m_{jj})$ distribution: Exclude $M_D < 3.78$ TeV.

15 March 2011

Doug Gingrich (Moriond EW-11)

Gaussian Limits

- Gaussian profile as signal template: 0.6 < m < 4.0, 3% < σ < 15% (5 different σ values).
- Can be used for different models:
 - Check validity of gaussian signal approximation and determine peak and width.
 - Determine model acceptance.
 - Calculate event yield for model cross section and 36 pb⁻¹.
 - Compare this event yield with limits.

Exclusion limit on number of events

Lepton plus Missing Transverse Energy

- W'/W* \rightarrow (e/ μ) v.
- W': same SM couplings as W.
- W*: anomalous magnetic moment type couplings.

$$m_T = \sqrt{2p_T E_T^{miss} \left(1 - \cos \phi_{lv}\right)}$$

- Electron: $E_T > 25 \text{ GeV}$, $E_T^{\text{miss}} > 25 \text{ GeV}$, $E_T^{\text{miss}}/E_T > 0.6$.
- Muon (barrel only): p_T > 25 GeV , E_T^{miss} > 25 GeV.

Lepton plus Missing Transverse Energy (2)

- Agreement between data and expected backgrounds good.
- Count events with $m_T > 0.5 m_{W'/W^*}$.
- W' mass > 1.49 TeV.
- W* mass > 1.47 TeV.

High Mass Dilepton Resonances

- Examples of high-mass resonances:
 - New heavy neutral gauge boson (Z', Z*)
 - Randall-Sundrum spin-2 graviton
 - Spin-1 techni-meson
- In this search $Z' \rightarrow ee \text{ or } \mu\mu$.
- Z': sequential SM with SM couplings.
- Z': E₆ motivated, 6 models with different mixing angles between two U(1) states.
- Assume resonance has narrow intrinsic width compared to detector mass resolution.
- E_{T} > 25 GeV (electrons).
- p_T > 25 GeV (muons).

High Mass Dilepton Resonances (2)

Measured (expected) limits: Z' (ee) mass > 0.957 (0.964) TeV. Z' ($\mu\mu$) mass > 0.834 (0.895) TeV. Z' (II) mass > 1.048 (1.084) TeV. Z' (E₆) mass > 0.738-0.900 TeV.

Conclusions

- Presented first results of searches for new physics with ATLAS detector using the 2010 LHC pp-collision data at $s^{1/2} = 7$ TeV.
- After a few months of operations, these searches already go beyond the reach of previous experiments, and start to explore new territories.

Long-Lived Highly Ionising Particles

- Different hypothesis on the production mechanism.
 - Inclusive HIP cross section produced in regions of pseudorapidity and kinetic energy acceptance.
 - Pair production cross section upper limits assuming a Drell-Yan production mechanism.

m (GeV)	q = 6e	q = 10e	q = 17e
200	1.4 pb	1.2 pb	2.1 pb
500	1.2 pb	1.2 pb	1.6 pb
1000	2.2 pb	1.2 pb	1.5 pb

Inclusive HIP cross section upper limits

Pair production cross section upper limits

m (GeV)	q = 6e	q = 10e	q = 17e
200	11.5 pb	5.9 pb	9.1 pb
500	7.2 pb	4.3 pb	5.3 pb
1000	9.3 pb	3.4 pb	4.3 pb

Diphoton with Large Missing Energy

 Relative systematic uncertainties on the expected UED signal cross section.

Source of uncertaintiy	Uncertaintiy
Integrated luminosity	11%
Photon reconstruction and identification	4%
Effect of pileup	2%
MET reconstruction and scale	1%
Signal MC statistics	1%
Total	12%

High Mass Dilepton Resonances

• Summary of systematic uncertainties on the expect number of events at $M_{\parallel} = 1$ TeV.

Source	dielectrons		dimuons	
	Z' signal	background	Z' signal	background
Normalization	5%	5%	5%	5%
PDFs	6%	6%	6%	6%
QCD K-factor	3%	3%	3%	3%
Weak K-gactor	NA	4.5%	NA	4.50%
Efficiency	-	-	3%	3%
Resolution	-	-	3%	3%
Total	9.4%	9.5%	9.4%	10.4%