Analysis of $Z \rightarrow l^+l^-$ Polarization at CMS

Nhan Tran

Johns Hopkins University on behalf of the CMS Collaboration

Young Scientist Forum Rencontres de Moriond, EW March 15, 2011

1

Motivation and Methodology

 The process qq→X→I+I⁺ rich with possible beyond the SM physics scenarios: extra-dimensions, new gauge bosons, etc.

- SM $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+l^-$ provides valuable testing ground
- Consider the Drell-Yan differential cross-section:

 $d\sigma/(ds \cdot d\cos\theta \cdot dY)$

- $d\cos\theta$: sensitive to $Z \rightarrow f \overline{f}$ couplings and weak mixing angle, $\sin^2\theta_W$
- Relative contributions of Z/γ^* in mass dependence
- Perform a multivariate analysis to increase sensitivity

By studying the differential cross-section of the DY process, we can make precision measurements of SM parameters; deviations may come from new physics in X/Z/γ^{*}.

Forward-backward asymmetry

- Forward-backward asymmetry, A_{FB}: simple analysis of Drell-Yan angular distribution with 36 pb⁻¹
 - Sensitive to broad high-mass resonance; slope sensitive to couplings
- Idea: measure $\cos\theta$ asymmetry in bins of mass:

 $A_{FB} = (N_F - N_B)/(N_F + N_B)$

• A_{FB} in good agreement with the Powheg and CMS simulation

Methodology

- Idea: per event multivariate likelihood function to extract maximal information from the event
 - requires contributions from signal and background model probability distribution functions
- Prob. dist. func. in observables of mass, angle, rapidity:

 $\mathcal{P}_{sig}(m,Y,\cos\theta;\sin^2\theta_W) = \left[\mathcal{P}_{ideal}(m,Y,\cos\theta) \otimes \mathcal{P}(m)\right] \times \mathcal{P}_{acc}(m,Y,\cos\theta)$

- Y-dependence includes description of q-q direction ambiguity
- accounts for detector acceptance and efficiency
- convolution to account for resolution and FSR
- Assume the SM and PDFs well-established, perform a single parameter likelihood fit for $sin^2\theta_W$
- Information about $\text{sin}^2\theta_W$ contained in the shape of the multivariate distribution

Likelihood model with simulation

Final likelihood model fit on Powheg and CMS simulation

Result of 400 toy experiments including sig + bkg yields: $sin^2\theta_W = 0.2306 \pm 0.0004$ (generated value: 0.2311)

Statistical error: per toy experiment = 0.0078 ± 0.0003 from data = 0.0077

Goodness-of-fit test: Ratio of (-log \mathcal{L}) in MC and data is 0.9997 ± 0.0029

Systematic uncertainties

Dominant systematics from FSR and resolution/alignment Conservative estimates, some cases statistics limited

source	uncertainty
LO model (ISR)	0.0011
PDFs	0.0015
FSR	0.0018
resolution/alignment	0.0022
fit model	0.0010
background	0.0007
total	0.0036

Total systematic error less than expected statistical error

Results with 40 pb⁻¹ of data

Data fit central value kept blind to avoid analysis bias

Fit result: $\sin^2\theta_{W} = X.XXXX \pm 0.0077$ (stat.) ± 0.0036 (sys.)

PDG value: 0.2312

Final cross-check: goodness-of-fit test yields good agreement with MC

Results with 40 pb⁻¹ of data

Data fit central value kept blind to avoid analysis bias

Fit result: $\sin^2\theta_W = 0.2287 \pm 0.0077$ (stat.) ± 0.0036 (sys.)

PDG value: 0.2312

Final cross-check: goodness-of-fit test yields good agreement with MC

Conclusions and Outlook

- We perform angular analysis of $Z \rightarrow l^+l^-$
- The forward-backward asymmetry is measured with 36 pb⁻¹ in good agreement with the SM
- A new technique is presented to measure $\sin^2\theta_W$ and a first measurement is made in the $Z \rightarrow \mu^+\mu^-$ channel with 40 pb⁻¹

Fit result: $\sin^2\theta_W = 0.2287 \pm 0.0077$ (stat.) ± 0.0036 (sys.)

• With 2011 statistics and combination with $Z \rightarrow e^+e^-$, a competitive measurement of the Weinberg weak mixing angle can be established in the channel $u\overline{u}$ or $d\overline{d} \rightarrow Z \rightarrow l^+l^-$

Backup

Event selection and background

- Lepton selection
 - isolation and other quality requirements
 - muon selection, A_{FB}
 - $p_T > 20$ GeV and $|\eta| < 2.1$
 - muon selection, likelihood analysis
 - p_T > 18,7 GeV; |η| < 2.4; p_T(CS) > 18 GeV; |η|(CS) < 2.3; p_T(Z) < 25 GeV
 - electron selection, A_{FB}
 - ET > 20 GeV (with energy scale corrections); $|\eta| < 2.5$ (excluding 1.4442 < $|\eta| < 1.560$)
- Backgrounds
 - leading contributions from τ⁺τ⁻, QCD, tt with smaller contributions from WW, WZ, W inclusive, ZZ
 - total background per channel < 1%

- What is the statistical improvement of likelihood method over traditional "template" method?
 - "Template" method: generate templates of AFB for many values of sin² θ_W , extract most probable value
- Feasibility test: run toy experiments comparing methods under equivalent conditions with Powheg simulation and CMS "fast resolution smear"
- Expected statistical error from 40pb⁻¹ sample:
 - Template method: $\sigma(\sin^2\theta_W) = 0.0113$
 - Likelihood method: $\sigma(\sin^2\theta_W) = 0.0080$
- Likelihood technique a factor of 1.4 improvement over template method; equivalent to doubling the statistics!

Acceptance and efficiency model

$\mathcal{G}_{acc}(m, Y, cos\theta)$ further sculpts the cos θ and Y distributions

$$\begin{split} \text{Lepton cuts: } |\eta| < Y_{\text{max}}; p_T > p_{T,\text{min}} \\ \text{Acceptance conditions:} \\ |\cos\theta| < \tanh(Y_{\text{max}} - |Y|); |\cos\theta| < [1-(2p_{T,\text{min}}/m)^2]^{1/2} \end{split}$$

2D acceptance function

