Constraints on Low-Mass WIMP Signals from CDMS

Steven W. Leman (MIT) 18 March 2011 Rencontres de Moriond EW La Thuile, Valle d'Aosta, Italy

CDMS Members

California Institute of Technology

Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore, R. Nelson, R.W. Ogburn

Case Western Reserve University

D. Akerib, C.N. Bailey, M.R. Dragowsky, D.R. Grant, R. Hennings-Yeomans

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R. B. Thakur, R.L. Schmitt, J. Yoo

Massachusetts Institute of Technology

A. Anderson, E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST

K. Irwin

Queen's University

P. Di Stefano, C. Crewdson, J. Fox, O. Kamaev, S. Liu, C. Martinez, P. Nadeau, W. Rau, Y. Ricci, M. Verdier

Santa Clara University B. A. Young

Southern Methodist University J. Cooley, B. Karabuga, S. Scorza, H. Qiu

SLAC/KIPAC

M. Asai, A. Borgland, D. Brandt, P.L. Brink, W. Craddock, E. do Couto e Silva, G.G. Godfrey, J. Hasi, M. Kelsey, C. J. Kenney, P. C. Kim, R. Partridge, R. Resch, D. Wright Stanford University

B. Cabrera, M. Cherry, R. Moffatt, L. Novak, M. Pyle, M. Razeti, B. Shank, A. Tomada, S. Yellin, J. Yen

Syracuse University M. Kos, M. Kiveni, R. W. Schnee

Texas A&M A. Jastram, K. Koch, R. Mahapatra, M. Platt, K. Prasad, J. Sander

University of California, Berkeley

M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, D. Speller, K.M. Sundqvist

University of California, Santa Barbara R. Bunker, D.O. Caldwell, H. Nelson

University of Colorado Denver B.A. Hines, M.E. Huber

University of Florida T. Saab, D. Balakishiyeva, B. Welliver

University of Minnesota J. Beaty, H. Chagani, P. Cushman, S. Fallows, M. Fritts, V. Mandic, X. Qiu, A. Reisetter, J. Zhang

University of Zurich S. Arrenberg, T. Bruch, L. Baudis, M. Tarka

Our best wishes to those affected by the ongoing crisis

CDMS

The Cryogenic Dark Matter Search

Event Discrimination

TEXONO

Instrumentation

Carrier Transient

e⁻

h+

phonons

Carriers (bulk events) go the right way

γ_____

-3

Carriers (surface events) injected into the wrong electrode

> + ballistic phonons

CDMS

Low Energy Analyses

- Stanford Underground Facility
- Soudan

DAMA and CoGeNT

Bernabei et al., Eur. Phys. J. C 56 333 (2008), arXiv:0804.2741

WIMP Event Rates

- 1 × 10⁻⁴¹ cm²
 cross section
- 544 km s⁻¹
 escape
 velocity
- 0.3 GeV cm⁻³
 density

Stanford Result

Akerib et al, PRD 82, 122004 (2010)

- Shallow site (17 m water equivalent overburden)
- + 118 live days from Dec 2001 June 2002
- + 4 × 224 g Ge
 - 1 × Ge not used due to high analysis threshold
 - 1 × Ge sensitive to cryostat temperature, live time reduced
- + 2 × 105 g Si

Cuts

Data Quality (No energy dependence, 99% efficiency)
 Noise
 Pileup

- Chi2 Phonon and ionization pretrigger
 - $< 5 \sigma$ from mean
- Single scatter
 (100% efficiency)
- *no* Muon veto, 50-80 μs
 (67-78% efficiency)
- Inner electrode (83% eff)
- Nuclear recoil (93-96% eff)

Energy Calibration

 Cosmic ray activated (Ge68) and neutron activated (Ge71) lines at 1.3 and 10.4 keV

 Cosmogenic (Ge73m) at 66.7 keV

WIMP Candidates

cut and threshold adjusted event rate

cut adjusted event rate

raw event rate

Ionization vs. Energy

	Ge	Si		
Total	1080	970	Electron 75 (Co) Capture	
Event Accounting (%)				•
1.3 keV line	32	0	Electron Reco	bils -
Zero-charge	30-40	30-40		
14C betas	0	40	Z4 (Si) Z 05 Nuclear Recoils	
Compton	10-20	10-20	Zero Ionization	
Cosmogenic	6	2	Events	
Other	2-22	0-18	0.5 1 10 Recoil energy (keV)	100

Ionization vs. Energy

WIMP-Nucleon 90% Exclusion Limits

C. Savage, et al, J. Cosmol. Astropart. Phys. 04 (2009) 010C. Savage, et al, J. Cosmol. Astropart. Phys. 09 (2009) 036C. Savage, et al, arXiv:1006.0972

D. Hooper et al., Phys. Rev. D 82, 123509 (2010)
A. Bottino, et al, Phys. Rev. D 67, 063519 (2003)
A. Bottino, et al, ibid.68, 043506 (2003); 69, 037302 (2004)
G. Belanger, et al, J. High Energy Phys. 03 (2004) 012

Soudan Result

Ahmed et al, PRL (accepted), arXiv:1011.2482

- + Oct 2006 Sept 2008
- + 241 kg days
- * 8 × 230 g Ge with lowest-detector thresholds of 2 keV
- + NR band (+1.25,-0.5)σ
 - Maximizes sensitivity to nuclear recoils while minimizing expected backgrounds

Ionization vs. Energy

Total Zero-charge Bulk

Surface 1.3 keV

Ionization vs. Energy

CDMS and CoGeNT

- Both use Ge detectors
- Signal in CoGeNT
 not seen in CDMS

• 7 GeV c⁻² 90% confidence

Hooper et al., Phys. Rev. D 82, 123509 (2010), arxiv:1007.1005

WIMP-Nucleon 90% Exclusion Limits

CDMS Stanford 1 keV ---CDMS Soudan 2 keV ---CDMS Soudan 10 keV ---XENON100 □ +

DAMA / LIBRA • CoGeNT • DAMA + CoGeNT 🔯

CDMS Soudan 10 keV --CRESST --XENON10 △

SuperCDMS

Interleaved Detectors

Microstrip Gas Chamber

+ A. Oed 1988 NIM A 263 (1988) 351-359

SCDMS iZip Detectors

- MSGC concept extended to CdZnTe, P. Luke Appl. Phys. Lett. 65 (22) 1994
- SCDMS, P. Brink et al NIM A 559 (2006) 414 - 416

SCDMS iZip Detectors

Surface Discrimination

1:10⁴ surface discrimination from ionization signal

Future Limits

Backup Slides

Inner Charge Cut

- + Area_qi = 83%
- + Cf-252 passage = 81 83%
- Energy dependence
 - * 84% (4 keV) 79% (100 keV)
 - <4 keV, qi and qo indistinguishable, linearly extrapolate to 100% passage

Search Complementarity

Direct

- + bulk
- focus point

Production

- + coannihilation
- + bulk

Indirect

- * coannihilation
- Higgs funnel

