# Recent results of CKM physics, quark masses from RBC/UKQCD

#### Taku Izubuchi for Riken-BNL-Columbia/UKQCD collaboration





Deepest Condolences to those who suffer from Tohoku-Pacific Ocean Earthquake, and all my best wishes for their earliest recovery.

Taku Izubuchi, La Thuile, Rencontres de Moriond EW, March 17, 2011

- Lattice QCD computation : ''Accelerator'' and ''Detector''
- CKM physics : continuum limit of  $B_K$
- QCD+QED simulation : up, down and strange quark masses
- Conclusion
- •
- (Current situation of Japanese community)

Taku Izubuchi, La Thuile, Rencontres de Moriond EW, March 17, 2011

# **RBC/UKQCD** collaboration

RIKEN-BNL Research Center (RBRC)

| V Acki TL C Lehner                                                                                                                                               | Univ. Virginia C. Dawson                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S. Ohta, E. Shintani                                                                                                                                             | Harvard Univ. M. Clark                                                                                                                                                            |
| BNL                                                                                                                                                              | Yale Univ. M. Lin                                                                                                                                                                 |
| M. Creutz, S. Ejiri, P. Hegde, C. Jur<br>TI, F. Karsch, S. Mukherjee,<br>C. Miao, P. Petreczky, C. Sturm,<br>A. Soni, R. Van de Water,<br>A. Velytsky, O. Witzel | <sup>19,</sup> <u>Univ. Edinburgh</u><br><b>R.Arthur</b> , P. Boyle, L. del Debbio,<br>N. Garron, A. Kennedy, R. Kenway,<br>C. Maynard, B. Pendelton,<br>J. Wennekers, J. Zanotti |
| Columbia Univ.<br>N. Christ, M. Endres, X-Y. Jin,<br>C. Kelly, M. Lightman, J-Z. Lin,<br>Q. Liu, R. Mawhinney, H. Peng,                                          | <u>Univ. Southampton</u><br>D. Brommel, J. Flynn, P. Fritzsch,<br>E. Goode, C. Sachrajda                                                                                          |
|                                                                                                                                                                  | Univ. Regensburg E. Scholz                                                                                                                                                        |
| Univ. Connecticut<br>T.Blum, S. Chowdhury,<br>T. Ishikawa, R. Zhou                                                                                               | CERN A. Juttner<br>11 students, 18 PhD theses                                                                                                                                     |
|                                                                                                                                                                  |                                                                                                                                                                                   |

## **RBC/UKQCD** collaboration



### Lattice QCD Advertisements

- Lattice QCD (LQCD, or LGT) is a perfect way to calculate physical quantities of QCD based on the first principle.
- Systematic errors could be, in principle, completely removable.
  - Perturbation theory is reliable for QED, and high energy QCD
  - Unknown truncation errors  $(\alpha_s^n)$ .
  - Non-perturbative effects of, e.g. a form

 $\exp[-1/\alpha_s^2] = 0 + 0\alpha_s^2 + 0\alpha_s^4 \cdots$ 

has no perturbative expansion in  $\alpha_s$ , which could be important for QCD's phenomena : bound states (Hadron), spontaneously breaking chiral symmetry, confinement of colored,....

LGT computing has two ingredients :

- QCD vacuum ensemble generation  $\sim$  Accelerator
- Physical observable measurements  $\sim$  Detector

## **Lattice Gauge Theory**

 Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs nonperturbative calculation.

> $\Psi(x), A_{\mu}(x), x \in \mathbb{R}^4$ : continuous infinity quantum divergences: needs regularization and renormalization



- Discretized Euclidean space-time
- lattice spacing  $a \sim 0.1$  fm (UV cut-off  $|p| \leq \pi/a$ )
- $\psi(n)$  : Fermion field (Grassmann number)
- $U_{\mu}(n)$  : Gauge field

• Feynman's path integral for Huge dimensional variables  $32^3 \times 64 \sim 150$ M Number of states (for simplest 4<sup>4</sup> Ising)  $2^{4^4} \sim 10^{77}$  needs more than  $10^{35}$  years !

## Hybrid Monte Carlo (LGT's "Accelerator")

- Monte Carlo to Sample Important configurations of QCD action  $e^{-S_{ t QCD}}$
- Accumulate samples of QCD vacuum, typically  $\mathcal{O}(100) \sim \mathcal{O}(1,000)$  files of gauge configuration  $U_{\mu}(n)$  on disk (1 ~ 10 GB/conf).
- By solving a classical QCD, with an occasional stochastic ''hit'':  ${
  m exactly}\propto e^{-S_{
  m QCD}}$
- Must generate sequentially  $\{U_{\mu}^{(0)} \rightarrow U_{\mu}^{(1)} \rightarrow \cdots \}$ , which needs capable machines.

$$\mathsf{Prob}(U_{\mu}) \propto \det D_{u,d,s}[U] e^{-S_g}$$





• RHMC for odd flavor [Clark Kennedy]

[D. Leinweber]

• Solve short (long) modes more (less) frequently [Hasenbush's trick]

### **Domain Wall Quarks (for up, down, and strange)**

[Kaplan, Shamir, Blum & Soni]

- 4D lattice quark utilizing an "extra dimension", L<sub>s</sub>. (expensive)
- Almost perfect chiral symmetry

Small unphysical mixing for the Weak Matrix Elements Error from discretization is small  $\mathcal{O}(a^2 \Lambda_{\text{QCD}}^2) \sim a$  few %. Chiral extrapolation is simpler, continuum like.

• Unitary theory (at long distance).



#### **Parameters of "Accelerator" (HMC)**

- Number of QCD vacuum ensembles, controls statistical accuracies (''Luminosity'').  $N_{conf} \sim O(100 - 1,000)$ ,
- lattice spacings a controls discretization errors  $a \sim 0.05$ -0.15 fm
- up, down, and strange ( $N_F = 2+1$ ) quark masses :  $m_u, m_d, m_s < \Lambda_{QCD} < m_c, m_b, m_t$ lighter the more computationally demanding  $\propto m_q^{-3}$ .  $M_{\pi}$  : 190  $\sim$  500 MeV
- lattice volume  $V : (2 \sim 6 \text{fm})^3$
- [C. Hoelbling, Lattice 2010]



### **Physics measurements "Detectors"**

• Measurements physical observables on the vacuum ensemble.

$$\langle \mathcal{O} \rangle = \int \underline{\mathcal{D}U_{\mu} \operatorname{\mathsf{Prob}}[U_{\mu}]} \times \mathcal{O}[U_{\mu}]$$

- Could do Analysis on many configurations independently (trivial parallel jobs)  $\longrightarrow$  could also use PC Clusters
- We made hadron operator (EW operators) from quark, and let the quark propagates on each of the generated QCD configuration (by solving the Dirac Eq)
- Obtain hadron mass or QCD matrix elements of operators



 $\langle 0|\bar{d}\gamma_5 u(0)|\pi\rangle \frac{e^{ipx}}{\sqrt{2E}} \langle \pi|\bar{u}\gamma_m u\gamma_5 d|0\rangle \times G_F V_{ud}m_\mu \bar{\nu}(1-\gamma_5)\mu$ 

 $\mathcal{M}(\pi \to \mu \overline{\nu}) \sim i f_{\pi} q_{\mu} \times G_F V_{ud} m_{\mu} (\overline{\nu} \mu)_L$ 

 $= \langle \pi(q) | \bar{u} \gamma_{\mu} \gamma_{5} d(0) | 0 \rangle \times G_{F} V_{ud} m_{\mu} (\bar{\nu} \mu)_{L}$ 



CKM physics on DWQCD [Ruth Van de Water lat09]



 In 1963, N. Cabbibo, then M. Kobayashi and T. Maskawa in 1973 introduced a mixing between quark flavors.

 $V_{CKM} = \begin{bmatrix} V_{ud}, V_{us}, V_{ub} \\ V_{cd}, V_{cs}, V_{cb} \\ V_{td}, V_{ts}, V_{tb} \end{bmatrix} \approx \begin{bmatrix} 1 - \lambda^2/2, & \lambda, & A\lambda^3(\rho - i\eta) \\ -\lambda, & 1 - \lambda^2/2, & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta), & -A\lambda^2, & 1 \end{bmatrix}$ 

• Unitary condition CKM matrix includes: the unitarity triangle



# $K^0 - \overline{K^0}$ mixing, Indirect CP violation

- $K^0_{L,S}$  are the superpositions of CP eigen states  $|K^0_{\pm}\rangle$  $|K_{L,S}\rangle \sim rac{1}{\sqrt{1+\epsilon_K^2}} \left(|K_{\mp}^0
  angle + \epsilon_K|K_{\pm}^0
  angle
  ight)$
- To compared with experimentally measured  $\epsilon_K$ , one needs to evaluate the matrix



elements of EW Hamiltonian

$$H^{\Delta S=2} = \frac{G_F^2 M_W^2}{16\pi^2} \left[ \left( V_{cd}^* V_{cs} \right)^2 F(x_c) + \left( V_{td}^* V_{ts} \right)^2 F(x_t) \right. \\ \left. + \frac{2 \left( V_{td}^* V_{ts} V_{cd}^* V_{cs} \right) \bar{F}(x_c, x_t) \left] O_{LL}}{2 \left( V_{td}^* V_{ts} V_{cd}^* V_{cs} \right) \bar{F}(x_c, x_t) \left] O_{LL}} \right]$$

Taku Izubuchi, La Thuile, Rencontres de Moriond EW, March 17, 2011

Besides known perturbative functions, this leads to Kaon's bag parameter  $B_K$ 

$$O_{LL} = \bar{s}\gamma_{\mu}(1-\gamma_{5})d\bar{s}\gamma_{\mu}(1-\gamma_{5})d$$

$$\epsilon_{K} = \mathcal{A} - \mathcal{B}\eta\rho\hat{B}_{K}$$

$$B_{K} = \frac{\hat{B}_{K}}{\alpha(\mu)^{-\gamma_{0}/(2\beta_{0})}} = \frac{\langle \bar{K}|O_{LL}|K \rangle}{\langle \bar{K}|O_{LL}|K \rangle_{VS}} = \frac{\langle \bar{K}|O_{LL}|K \rangle}{\frac{8}{3}f_{K}^{2}M_{K}^{2}}$$

Taku Izubuchi, La Thuile, Rencontres de Moriond EW, March 17, 2011

# **Calibration of "Detector"**

#### **New Renormalization Schemes**

[09 C. Sturm, Y. Aoki, N. Christ, TI, C. Sachrajda, A. Soni] [10 L. Almeida, C. Sturm]

 Match the normalization of operator on lattice and in continuum theory (MS) via RI/SMOM schemes

calculate the 3 pt amplitudes for a momentum configuration (SMOM) on lattice non-perturbatively, and in continuum theories.



$$(q^2 = p_1^2 = p_2^2)$$



- We find symmetric momentum (SMOM) configuration is useful to reduce one of the dominant systematic errors due to IR effects.
- Quark mass renormalization error

 $\sim 10\%$  (MOM)  $\rightarrow \sim 5\%$  (SMOM)  $\rightarrow \sim 2\%$  (SMOM 2loop),

- Using different RI/SMOM schemes (using various spinor projections) to check the systematic errors
- Four quark operator for B\_K

# Z(BK) systematic errors



 $Z_{B_K}^{NDR}(\mu = 2\text{GeV}, a^{-1} = 2.31\text{GeV}) = 0.964(25)[2.6\%]$  $Z_{B_K}^{NDR}(\mu = 2\text{GeV}, a^{-1} = 1.73\text{GeV}) = 0.936(30)$ 

# $a^2$ correction of $B_K$



- $a^{-1} = 1.73(3)$  GeV and 2.28(3) GeV.
- $\mathcal{O}(a^2)$  correction is done to data point in right plot
- Two extrapolations: SU(2)+Kaon ChPT and the linear.

### **Comparison with other results**



•  $\hat{B}_K = 0.749(7)_{stat}(21)_{\chi}(3)_{FV}(15)_{NPR}$  [RBC/UKQCD10 arXiv:1012.4178]

• (Laiho, Lunghi, & Van de Water, http://latticeaverages.org/

#### Compute Pion/Kaon using Nf=2+1 DWF QCD + QED Requiring m<sub>q</sub> < 40 MeV (70MeV), 48 (120)</li>

Requiring  $m_q$  < 40 MeV (70MeV), 48 (120) partially quenched data points for PS meson survive

- Fit to chiral perturbation theory with EM (SU(3)+EM and <u>SU(2)+Kaon+EM</u>) to extract quark masses.
- Chiral symmetry is essential to define quark massless points.

#### Input:

$$M_{\rm PS}(m_u, 2/3, m_d, -1/3) = 139.57018(35) \,\text{MeV}$$
  
$$M_{\rm PS}(m_u, 2/3, m_s, -1/3) = 493.673(14) \,\text{MeV}$$
  
$$M_{\rm PS}(m_d, -1/3, m_s, -1/3) = 493.673(14) \,\text{MeV}$$

# **QCD+QED** simulation

[R. Zhou, S. Uno, T. Blum, T. Doi, M. Hayakawa. TI, N. Yamada, ] • Up down quark has different electric charge and masses

 $\rightarrow$  Breaking of isospin symmetry

 Isospin breaking effects are accurately measured experimentally

 $\Delta m_{\pi} = m_{\pi^{\pm}} - m_{\pi^0} = 4.5936(5) \text{MeV}, \quad m_N - m_P = 1.2933317(5) \text{MeV}$  (attractive)

• <u>Quark masses</u>. (Strong CP problem)



 $24^3$  m<sub>1</sub> = 0.01

(repulsive)

### **Quark mass from QCD+QED simulation**

#### [PRD82 (2010) 094508 [47pages]]

 $\begin{array}{rcl} m_u &=& 2.24 \pm 0.10 \pm 0.34 \ \mbox{MeV} \\ m_d &=& 4.65 \pm 0.15 \pm 0.32 \ \mbox{MeV} \\ m_s &=& 97.6 \pm 2.9 \pm 5.5 \ \mbox{MeV} \\ m_d - m_u &=& 2.411 \pm 0.065 \pm 0.476 \ \mbox{MeV} \\ m_{ud} &=& 3.44 \pm 0.12 \pm 0.22 \ \mbox{MeV} \\ m_u/m_d &=& 0.4818 \pm 0.0096 \pm 0.0860 \\ m_s/m_{ud} &=& 28.31 \pm 0.29 \pm 1.77, \end{array}$ 

- MS at 2 GeV using NPR/SMOM scheme.
- Particular to QCD+QED, finite volume error is large: 14% and 2% for  $m_u$  and  $m_d$ .
- This would be due to photon's non-confining feature (vs gluon).
- Volume,  $a^2$ , chiral extrapolation errors are being removed.
- Applications for Hadronic contribution to  $(g-2)_{\mu}$  in progress.

#### Comparison with u,d masses in PDG

red  $N_F = 2 + 1$  staggered, DWF blue  $N_F$ =2 DWF (2.7 fm)<sup>3</sup>



Taku Izubuchi, The Ohio State University, November 29, 2010

Taku Izubuchi, La Thuile, Rencontres de Moriond EW, March 17, 2011

42

## Conclusions

• Progress in Theory, Algorithm, and Hardware are finally bringing us the opportunity to calculate physics quantities [A. Juttner's talk]

 $\underline{m}_u, \underline{m}_d, \underline{m}_s, \underline{f_\pi, f_K}, \underline{B_K}, \underline{f_+(q^2)}, f_B, B_B, \cdots$ 

which are highly relevant to our understanding of the fundamental constituents of matter and the forces between them with fully controlled systematic errors.

- Continuum limit of  $B_K$  is taken.
- One step towards QCD+QED computation that fully includes isospin breaking effects (quark mass and charge).
- Future prospects :
  - $K \to \pi \pi$  decay,  $\epsilon'/\epsilon$ .  $\Delta I = 3/2$  is under control,  $\Delta I = 1/2$  is begin challenged.
  - Eliminates three sources of systematic errors on the next generation machines.
  - Other applications of QCD+QED including  $(g-2)_{\mu}$  Hadronic light-by-light diagram.

## **2011 Tohoku-Pacific Ocean Earthquake**

- Friday, March 11th 14:46 (JST) M9.0 + many smaller but still significant earth quakes.
- Among many other bad damages, KEK, J-PARC, RIBF, were shutdown after the earthquake.
- Monday, March 14th 22:50 (JST) A roll call (head count) for members of national-wide Particle & Nuclear Theory Group (Soryushi-Ron Group; SG), who belong to the institutes located in Tohoku-Kantou-Koushinetsu region, announced on the mailing list.
- Some colleagues may be staying in shelters.

- As of 19:00 (JST) yesterday, approximately after 43 hours from the call, 387 names, from 45 institutes are reported to be safe on the wik. It's been rapidly growing.
   [Koji Hahsimoto (RIKEN), Tetsuji Kimura (KEK), Yuji Tachikawa (IPMU), TI] (Note this is NOT 100 % confirmed results (PRELIMINARY)).
- No seriously injured person from SG are known to us so far.
- Computers, such as RICC, are still working ! (suffering once a day shutdown due to the scheduled power outage, RIBF as well).
- Some colleagues, from affected institutes, already started looking for places to continue their studies. Some already moved and started to work.
- I belive many experimentalists at KEK, RIKEN, Univ. of Tokyo and very many others are monitoring the radioactive levels of the nation.
- RIBF at RIKEN, already restarted from Monday, KEK and J-PARC will start to recover as soon as next week.

# **QCD\* machines** [ Columbia Univ, RBRC, Univ. of Edinburgh ]

- QCDSP(48GF/rackpeak),TIDSPC31(1993-1998) 12 racks at RBRC, 600GF
- QCDOC(0.8TF/rack)180nmASIC(2003-2005) 1 core, System on Chip, 12 racks at RBRC, 10TF, \$1/Mflops(sustained)
- QCDCQ(205TF/rack)45nm(2007-2011) 2 racks at RBRC/BNL, 400 TF





- Low power consumptions  $\rightarrow$  large number of nodes (1,024) per rack
- High memory/interconnect Bandwidth
- Gives efficient performance for lattice QCD

# **Other machines**





Argonne, (IBM BG/P 557 TF peak)

RIKEN/Japan RICC (Cluster, 100 TF peak)

Via USQCD collaboration, als Clusters @ J-Lab, FNAL

Taku Izubuchi, La Thuile, Rencontres de Moriond EW, March 17, 2011

#### **Origins of Isospin breaking in Kaon**

• Reason why the iso doublet,  $(K^+, K^0)$ , has the mass splitting

 $M_{K^{\pm}} - M_{K^0} = -3.937(29)$  MeV, [PDG]

- ▷  $(m_{dwn} m_{up})$  : makes  $M_{K^+} M_{K^0}$  negative. ▷  $(q_u - q_d)$  : makes  $M_{K^+} - M_{K^0}$  positive.
- Using the determined quark masses and SU(3) LEC, we could isolate (to  $O((m_{up} m_{dwn})\alpha))$ ) each of contributions,

$$M_{\text{PS}}^{2}(m_{\text{up}}, 2/3, m_{\text{str}}, -1/3) - M_{\text{PS}}^{2}(m_{\text{dwn}}, -1/3, m_{\text{str}}, -1/3)$$

$$\simeq M_{\text{PS}}^{2}(m_{\text{up}}, 0, m_{\text{str}}, 0) - M_{\text{PS}}^{2}(m_{\text{dwn}}, 0, m_{\text{str}}, 0) \qquad [\Delta M(m_{\text{up}} - m_{\text{dwn}})]$$

$$+ M_{\text{PS}}^{2}(\bar{m}_{ud}, 2/3, \bar{m}_{ud}, -1/3) - M_{\text{PS}}^{2}(\bar{m}_{ud}, -1/3, m_{\text{str}}, -1/3) \qquad [\Delta M(q_{u} - q_{d})]$$

•  $\triangle M(m_{up} - m_{dwn}) = -5.23 (14) \text{ MeV} [133(4)\% \text{ in } \Delta M^2(m_{up} - m_{dwn})]$  $\triangleright \Delta M(q_u - q_d) = 1.327(37) \text{ MeV} [-34(1)\% \text{ in } \Delta M^2(q_u - q_d)]$ 

Also SU(3) ChPT,  $\Delta M(m_{up} - m_{dwn})$ =-5.7(1) MeV and  $\Delta M(q_u - q_d)$ =1.8(1) MeV.

• Similar analysis for  $\pi$  is possible, but facing a difficulty of isolating sea strange quark terms.  $m_{\pi^{\pm}} - m_{\pi^{0^{*}}} = 4.50(23)$  MeV

Taku Izubuchi, The Ohio State University, November 29, 2010

43

#### Nucleon mass splitting in $N_F = 2, 2 + 1$



Taku Izubuchi, The Ohio State University, November 29, 2010

44