CP violation study in B physics with LHCb

Yuehong Xie (University of Edinburgh) On behalf of the LHCb Collaboration

Recontres de Moriond EW session, March 2011

Outline

- LHCb physics goals
- LHCb detector
- Results using 2010 data
 - Analysis of $B_s \rightarrow J/\psi \phi$ and control channels
 - First observation of $B_s \rightarrow J/\psi f_0$
 - First observation of $B_s \rightarrow K^{*0} \overline{K}^{*0}$
- Conclusions and prospect

(Some) LHCb physics goals

- LHCb physics objective: search for new physics (NP) effects in loop-mediated processes
 - CP violation: this talk
 - rare decays: talk by Diego Martinez
- Separate probes of CP-violating NP effects in
 - box diagrams: B_s mixing phase measured using $B_s \rightarrow J/\psi \phi, B_s \rightarrow J/\psi f_0$
 - penguin diagrams: CP asymmetries measured in $B_s \rightarrow \phi \phi, B_s \rightarrow K^{*0} \overline{K^{*0}}$ and $B \rightarrow hh$ (direct CP violation in B \rightarrow hh: talk by Stefano Perazzini in YSF2 session)

3

LHCb detector

LHCb is a single arm forward spectrometer: $1.9 < \eta < 4.9$ Dedicated for study of CP violation and rare B decays: all B species; large B cross section; efficient, flexible trigger

Features:

Precise and robust vertexing and tracking

Good particle identification (hadron, muon, electron, photon)

About 37 pb⁻¹ collected at 7 TeV in 2010 run

Probe of NP in B_c mixing

- ΦD • Weak phase difference between Bs interfering amplitudes: $\phi_s = \Phi_M - 2\Phi_D$ Φ_M
- Precise SM prediction $\phi_s^{SM} = -0.036 \pm 0.002$ rad

dominated by SM contribution could have large NP contribution

- Decay width difference: $\Delta \Gamma_s = \Gamma_L \Gamma_H$
- Both ϕ_s and $\Delta \Gamma_s$ sensitive to NP in B_s mixing
- Weakly constrained by experiments

$B_s \rightarrow J/\psi \phi$ analysis ingredients

- Trigger and select signals and control channels in a similar way to understand detector effects
 - demonstration: measure lifetimes of b-hadron $\rightarrow J/\psi X$
- Disentangle polarizations of P \rightarrow VV decays – demonstration: measure polarization parameters in $B_d \rightarrow J/\psi K^*$
- Determine initial flavour of B mesons
 - demonstration: measure Δm_d and Δm_s
- Fit differential rates of initial B_s and \overline{B}_s

– first step: untagged analysis of $B_s \rightarrow J/\psi \phi$

Selection of $b \rightarrow J/\psi X$

- Time unbiased trigger/selection as baseline, complemented by time-biased trigger to increase statistics
- Retain prompt background events (t~0) for time resolution calibration: $\sigma_t \sim 50$ fs
- Excellent mass resolutions
- Very low background with t>0.3 ps, shown below:

$b \rightarrow J/\psi X \text{ lifetimes}$ (LHCb-CONF-2011-001)

* All "lifetimes" are fitted with a single exponential

Angular analysis of $B_d \rightarrow J/\psi K^*$ (LHCb-CONF-2011-002)

- $P \rightarrow VV$ polarization amplitudes $(A_0, A_{\parallel}, A_{\perp})$ can be measured in distribution of transversitiy angles (θ, ϕ, ψ)
- Correct for angular efficiency using simulation
- $K\pi$ S-wave included

LHCb preliminary
$$\begin{split} |A_{\parallel}|^2 &= 0.252 \pm 0.020 \pm 0.016 \\ |A_{\perp}|^2 &= 0.178 \pm 0.020 \pm 0.017 \\ \delta_{\parallel} \, (rad) &= -2.87 \pm 0.11 \pm 0.10 \\ \delta_{\perp} \, (rad) &= 3.02 \pm 0.10 \pm 0.07 \end{split}$$

 K^+

 $B_s(B_d)$

 J/ψ

 $B_s(B_d)$

 $\phi(K)$

Untagged analysis of $B_s \rightarrow J/\psi\phi$ (LHCb-CONF-2011-002)

Fix ϕ_{s} to zero, and fit $\frac{d^{4}\Gamma(B_{s}^{0} \rightarrow J/\psi\phi)}{dt \, d\cos\theta \, d\phi \, d\cos\psi} = f(\phi_{s}, \Delta\Gamma_{s}, \Gamma_{s}, \Delta m_{s}, M_{B_{s}^{0}}, |A_{\perp}|, |A_{\parallel}|, \delta_{\perp}, \delta_{\parallel})$

LHCb preliminary (36 pb⁻¹)

$\Gamma_{\rm s}({\rm ps}^{-1})$	$0.679 \pm 0.036 \pm 0.027$
$\Delta\Gamma_{\rm s}({\rm ps}^{-1})$	$0.077 \pm 0.119 \pm 0.021$
$ A_0 ^2$	$0.528 \pm 0.040 \pm 0.028$
$ A_{\perp} ^2$	$0.263 \pm 0.056 \pm 0.014$
δ_{\parallel} (rad)	$3.14 \pm 0.52 \pm 0.13$

CDF note 10206 (5.2 fb⁻¹)

$\Gamma_{\rm s}({\rm ps}^{-1})$	$0.653 \pm 0.011 \pm 0.005$
$\Delta\Gamma_{\rm s}({\rm ps}^{-1})$	$0.075 \pm 0.035 \pm 0.010$
$ A_0 ^2$	$0.524 \pm 0.013 \pm 0.015$

Feldman-cousins confidence regions (LHCb-CONF-2011-002)

No constraints on ϕ_s ; can limit $\Delta \Gamma_s$

4 ambiguities: reduced to 2 using flavour tagging; completely resolved using interferences between K⁺K⁻ P-wave and S-wave.

Flavour tagging (LHCb-CONF-2011-003)

- Initial flavour of B can be inferred from
 - Opposite Side: products of the other B meson
 - Same Side: fragmentation particles associated to signal B
- OS (and SS pion) taggers optimized and calibrated

$OS+SS-\pi$	$\varepsilon_{ m tag}$ (%)	ω (%)	$\varepsilon_{ m eff}$ (%)
$\mathrm{B}^0 ightarrow \mathrm{D}^{*-} \mu^+ u_{\mu}$	28.9 ± 0.2	34.2 ± 0.8	2.87 ± 0.32
$B^+ \rightarrow J/\psi K^+$	23.0 ± 0.5	33.9 ± 1.1	2.38 ± 0.33
${ m B}^0 ightarrow { m J}\!/\!\psi { m K}^{*0}$	26.1 ± 0.9	33.6 ± 5.1	2.82 ± 0.87

$$\varepsilon_{\text{tag}} = \frac{R+W}{R+W+U} \qquad \omega = \frac{W}{R+W}$$
$$\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} D^2 = \varepsilon_{\text{tag}} (1-2\omega)^2$$

$B^+ {\,\longrightarrow\,} J/\psi K^+$

Y: estimated per event mistag X: calibrated mistag Fitted to a linear function

• Optimization and calibration of SS kaon tagger ongoing

Δm_d and Δm_s (LHCb-CONF-2011-010, LHCb-CONF-2011-005)

LHCb: $\Delta m_d = 0.499 \pm 0.032 \pm 0.003 \text{ ps}^{-1}$ World average $\Delta m_d = 0.507 \pm 0.005 \text{ ps}^{-1}$

LHCb: $\Delta m_s = 17.63 \pm 0.11 \pm 0.04 \text{ ps}^{-1}$ CDF: $\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$ (PRL 97, 242003)

Redline: evaluated at infinite oscillation frequency 4.6σ significance

Only OST used, $\varepsilon_{eff} = (3.5 \pm 2.1)\%$ Per event time resolution $\langle \sigma_t \rangle \sim 40$ fs

Tagged analysis of $B_s \rightarrow J/\psi \phi$

- Analysis ongoing
- Precision in ϕ_s will be comparable to the CDF precision very soon (thanks to factor of 10 better time resolution in terms of statistical power)

	LHCb 36 pb ⁻ ∗ ¹	CDF 5.2 fb^{-1}
${ m B}^0_{ m s} ightarrow { m J}\!/\!\psi\phi$	960	6500
Proper time resolution	50 fs	100 fs
OS tagging power	$2.5\pm0.8\%$	$1.2\pm0.2\%$
SS tagging power	work ongoing	$3.5\pm1.4\%$

(* also including time biased trigger lines)

LHCb aims to make world's best measurement of ϕ_s with data from 2011 run

First observation of $B_s \rightarrow J/\psi f_0$ LHCb, PLB 698 (2011) 115

- CP odd, no need for angular analysis
- Good precision to complement $B_s \rightarrow J/\psi \phi$
- Can use $f_0 \rightarrow KK$ to resolve sign ambiguity in ϕ_s (JHEP 0909:074, 2009, Y. Xie *et al.*)¹⁵

First observation of $B_s \rightarrow K^{*0}\overline{K^{*0}}$ (and first report in conference)

Mixing-induced and direct CP asymmetries sensitive to NP that affects weak phases of box and penguin diagrams differently

Using known BR($B_d \rightarrow J/\psi K^*$), LHCb measures

 $\mathcal{B}(\overline{B}^0_s \to K^{*0}\overline{K}^{*0}) = (1.95 \pm 0.47 (\text{stat.}) \pm 0.66 (\text{syst.}) \pm 0.29 (f_d/f_s)) \times 10^{-5}$

Conclusions and prospect

- LHCb has produced interesting results using 2010 data and tested the machinery for CP violation study in B decays
 - b-hadron lifetimes
 - Polarization parameters of $B_d \!\rightarrow\!\! J/\psi K^*$ and $B_s \!\rightarrow\!\! J/\psi \phi$
 - B_s mass difference Δm_s
 - First observation of $B_s \rightarrow J/\psi f_0$ and $B_s \rightarrow K^{*0}K^{*0}$
 - Direct CP violation in $B_{d/s} \rightarrow K\pi$
- High precision results from flavour-tagged timedependent analyses of $B_s \rightarrow J/\psi \phi$, $B_s \rightarrow J/\psi f_0$ and $B \rightarrow hh$ can be expected with 2011 data

Backup slides

LHCb operation in 2010

LHC operated at 7 TeV in 2010

Time resolution

- Fit time distribution including t~0 region
- Prompt background: all tracks from same pp interaction: modeled with triple Gaussian
- Fit results are turned into a single indicative resolution number

Lifetime systematics

• Systematic uncertainties are very conservative and can be largely reduced with increased statistics and better understanding of data and simulation

	$B^+ \to J/\psi K^+$	$B^0 \rightarrow J/\psi K^{*0}$	$B_s^0 \rightarrow J/\psi \phi$	$B^0 \rightarrow \mathbf{J}/\psi K_{\mathrm{s}}^0$	$\Lambda_b ightarrow { m J}\!/\!\psi\Lambda$
signal mass model	0.001	0.001	0.004	0.015	0.014
background mass model	0.008	0.023	0.004	0.007	0.025
background time model	0.001	0.004	0.002	0.008	0.007
time resolution model	0.005	0.005	0.005	0.005	0.005
momentum scale	0.0008	0.0008	0.0007	0.0008	0.0007
decay length scale	0.0005	0.0005	0.0004	0.0005	0.0004
proper time acceptance	0.046	0.035	0.055	0.009	0.019
Total systematic uncertainty	0.047	0.042	0.056	0.022	0.035

Table 37: Summary table of systematic uncertainties in the lifetime measurements (ps).

Fitting $B_d \rightarrow J/\psi K^*$

▶ Signal PDF for the decay $B_d \rightarrow J/\psi K^*$

$$\begin{aligned} \frac{\mathrm{d}^{4}\Gamma}{dtd\Omega} &= e^{-\Gamma_{\mathrm{d}}t} \Big[f_{1}(\Omega) |A_{0}(0)|^{2} + f_{2}(\Omega) |A_{\parallel}(0)|^{2} + f_{3}(\Omega) |A_{\perp}(0)|^{2} \\ & \pm f_{4}(\Omega) \sin(\delta_{\perp} - \delta_{\parallel}) |A_{\parallel}(0)| |A_{\perp}(0)| \\ & + f_{5}(\Omega) \cos\delta_{\parallel} |A_{0}(0)| |A_{\parallel}(0)| \\ & \pm f_{6}(\Omega) \sin\delta_{\perp} |A_{0}(0)| |A_{\perp}(0)| \Big] \end{aligned}$$

- ▶ ± for $K^+\pi^-(K^-\pi^+)$ in final state
- Terms f_i(Ω) describe angular dependence of the amplitudes/interference terms
- > Also need to account for nonresonant $K\pi$ S-wave contribution

$B_d \rightarrow J/\psi K^*$ Systematics

	$ A_{\parallel} ^{2}$	$ A_{\perp} ^{2}$	δ_{\parallel} [rad]	δ_{\perp} [rad]	$ A_{\rm s} ^2$	$\delta_{\rm s}[{\rm rad}]$	$\Gamma_{\rm d}[{\rm ps}^{-1}]$
proper time acceptance	-	-	-	-	-	-	0.018
data/MC differences	0.008	0.006	0.07	0.05	0.006	0.22	0.001
statistical error of acceptance	0.002	0.001	-	0.01	0.001	0.01	0.002
wrong-signal fraction	0.004	0.001	-	0.01	0.005	0.01	0.012
background treatment	0.002	0.008	0.04	0.01	0.008	0.09	0.032
statistical error of background	0.008	0.005	0.02	0.01	0.005	0.03	0.003
mass model	0.010	0.002	0.01	0.01	0.007	0.07	0.015
s-wave treatment	0.001	0.013	0.05	0.05	-	-	0.002
sum	0.016	0.017	0.10	0.07	0.014	0.25	0.042

Fitting $B_s \rightarrow J/\psi \phi$

▶ Signal PDF for the decay $B_s \rightarrow J/\psi \phi$

$$\begin{aligned} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}t\mathrm{d}\Omega} &= e^{-\Gamma_{s}t} \big[|A_{0}(0)|^{2} f_{1}(\Omega) e^{-\frac{\Delta\Gamma_{s}}{2}t} \\ &+ |A_{\parallel}(0)|^{2} f_{2}(\Omega) e^{-\frac{\Delta\Gamma_{s}}{2}t} \\ &+ |A_{\perp}(0)|^{2} f_{3}(\Omega) e^{+\frac{\Delta\Gamma_{s}}{2}t} \\ &+ \cos \delta_{\parallel} |A_{0}(0)| |A_{\parallel}(0)| f_{5}(\Omega) e^{-\frac{\Delta\Gamma_{s}}{2}t} \big] \end{aligned}$$

▶ This PDF assumes $\phi_s = 0$, additional terms appear for $\phi_s \neq 0$

$B_s \rightarrow J/\psi \phi$ systematics

Systematic offect		Abs. deviation for parameter				
Systematic enect	$\Gamma_s[\mathrm{ps}^{-1}]$	$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	$ A_{\perp}(0) ^2$	$ A_{\parallel}(0) ^2$	δ_{\parallel} [rad]	
Lifetime resolution	0.0001	-	-	-	-	
Angular acceptance	-	-	-	0.0007	-	
Acceptance parametrization	0.0002	0.001	0.0017	0.0013	-	
Lifetime acceptance	0.0272	0.001	0.0003	0.0002	-	
S-wave	0.003	0.003	0.013	0.028	0.13	
Background description	0.0002	0.02	0.0016	0.0012	-	
Mass model	0.0004	0.004	0.0032	0.0006	-	
Σ (quadratic)	0.0274	0.0206	0.0136	0.0281	0.13	

$B_s \rightarrow J/\psi \phi$ likelihood scan (LHCb-CONF-2011-002)

Likelihood scan over the φ_s/ΔΓ_s plane
 68.3%, 90%, 95% and 99% contour shown

Flavour tagging (LHCb-CONF-2011-003)

- Initial flavour of B can be inferred from
 - Opposite Side: products of the other B meson
 - Same Side: fragmentation particles associated to signal B
- Optimized and calibrated using control channels

$OS+SS-\pi$	$\varepsilon_{ m tag}(\%)$	ω (%)	$\varepsilon_{ m eff}(\%)$
$\mathrm{B}^{0} ightarrow \mathrm{D}^{*-} \mu^{+} \nu_{\mu}$	28.9 ± 0.2	34.2 ± 0.8	2.87 ± 0.32
$B^+ \rightarrow J/\psi K^+$	23.0 ± 0.5	33.9 ± 1.1	2.38 ± 0.33
${ m B}^0 ightarrow { m J}\!/\!\psi { m K}^{*0}$	26.1 ± 0.9	33.6 ± 5.1	2.82 ± 0.87

$$\varepsilon_{\text{tag}} = \frac{R+W}{R+W+U} \qquad \omega = \frac{W}{R+W}$$
$$\varepsilon_{\text{eff}} = \varepsilon_{\text{tag}} D^2 = \varepsilon_{\text{tag}} (1-2\omega)^2$$

$B^+ \longrightarrow J/\psi K^+$

Y: estimated per event mistag X: calibrated mistag Fitted to a linear function

27

$B_d \rightarrow D^-(K^+\pi^-\pi^-)\pi^+ \text{ for } \Delta m_d$

Systematics

Study	$\Delta(\Delta m_d) [\text{ps}^{-1}]$	p_0	p_1		
proper time resolution	0.000	0.000	0.00		
proper time acceptance	0.003	0.001	0.01		
variation of η_c PDF	0.002	0.004	0.15		
floating fit parameters	-	0.001	0.01		
double Gaussian mass signal PDF	-	0.001	0.01		
z-scale	0.0005	-	-		
momentum scale	0.0005	-	-		
Sum	0.004	0.004	0.15		
Systematic uncertainties for o	Systematic uncertainties for opposite side taggers only				

28

$B_s \rightarrow D_s^{-}(K^+K^-\pi^-)(3)\pi^+ \text{ for } \Delta m_s$

More on Δm_s

Systematics

Amplitude scan

source	$\Delta_{\Delta m_s}[ps^{-1}]$	
proper time resolution	0.006	-
proper time resolution model	0.001	
proper time acceptance function	0.000	\vec{a} = \sqrt{s} = 7 TeV
fixed parameters floating	0.003	
diff. background shape in mass fit	0.010	0.5
phys. bkg mass templates	0.002	
variation of η_c and σ_t PDFs	0.026	
z-scale	0.018	-0.5 -35 pb^{-1}
$\mathrm{momentum\ scale}$	0.018	-1
$\Delta\Gamma_s$	0.002	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
total systematic uncertainties	0.038	

LHCb (35 pb ⁻¹)		cf. CDF (1 fb ⁻¹)		
$B_{s} \rightarrow D_{s}(\phi \pi) \pi$	515 ± 25	$B_s \rightarrow D_s \pi$	4100	
$B_s \rightarrow D_s(K^*K)\pi$	338 ± 27	$B_s \rightarrow D_s \pi$ partial	3100	
$B_s \rightarrow D_s \pi$ non-reso	283 ± 27	$B_s \rightarrow D_s 3\pi$	1500	
$B_s \rightarrow D_s 3\pi$	245 ± 46	semileptonic	61500	

30

Remove ambiguity in ϕ_s

two-fold ambiguity in ϕ_s from $B_s \rightarrow J/\psi \phi$

$$\begin{pmatrix} \delta_{\prime\prime\prime} - \delta_0, \delta_{\perp} - \delta_0, \delta_s - \delta_0, \Phi_s, \Delta \Gamma_s \end{pmatrix} \Leftrightarrow \\ \begin{pmatrix} \delta_0 - \delta_{\prime\prime\prime}, \pi + \delta_0 - \delta_{\perp}, \delta_0 - \delta_s, \pi - \Phi_s, -\Delta \Gamma_s \end{pmatrix}$$

Including S-wave $(J/\psi f_0)$: two branches when plotting $\delta_S - \delta_0$ versus m(KK)

Blue: simulated dependence Red: physical solution Black: mirror solution

The branch falling rapidly across the $\phi(1020)$ resonance mass region provides the physical solution

Physics in $B_s \rightarrow K^{*0}K^{*0}$

b→s penguin process

SM decay amplitude

$$A(B_s \to K^{*0}\bar{K}^{*0}) = -V_{tb}^*V_{ts} P_s - V_{ub}^*V_{us} P_s^{\text{GIM}}$$

dominated by top loop P_s

Null test of SM

- $\Phi_{\rm M}$ -2 $\Phi_{\rm D}$ =0 \Longrightarrow mixing-induced asymmetry direct CP asymmetry
- $S(B_{s} \to K^{*0}\overline{K}^{*0}) = 0$ $C(B_{s} \to K^{*0}\overline{K}^{*0}) = 0$
- CKM suppressed up and charm loops $P_{\underline{s}}^{GIM}$ controlled using d \leftrightarrow s channel $B_d \rightarrow K^{*0}K^{*0}$ (M. Ciuchini, M. Pierini, L. Silvestrini, PRL 100, 031802)

Sensitive to NP that affects weak phases of box and penguin diagrams differently

 $B_s \rightarrow K^{*0}K^{*0}$ angular distr.

$$\begin{split} I(\theta_1, \theta_2, \varphi) &= \frac{1}{\Gamma} \frac{\mathrm{d}^3 \Gamma}{\mathrm{d} \cos \theta_1 \, \mathrm{d} \cos \theta_2 \, \mathrm{d} \varphi} = \begin{pmatrix} \frac{1}{\Gamma_L} & |A_0|^2 & \cos^2 \theta_1 \cos^2 \theta_2 + \\ & \frac{1}{\Gamma_L} & |A_{\parallel}|^2 & \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \cos^2 \varphi + \\ & \frac{1}{\Gamma_H} & |A_{\perp}|^2 & \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin^2 \varphi + \\ & \frac{1}{\Gamma_L} & |A_0| & |A_{\parallel}| \cos \delta_{\parallel} \frac{1}{2\sqrt{2}} \sin 2\theta_1 \sin 2\theta_2 \cos \varphi \end{pmatrix} \end{split}$$

 $BR(B_s \rightarrow K^{*0}\overline{K}^{*0})$

$$\mathcal{B}\left(\overline{B}_{s}^{0} \to K^{*0}\overline{K}^{*0}\right) = \lambda_{f_{L}} \times \frac{N_{\overline{B}_{s}^{0} \to K^{*0}\overline{K}^{*0}}}{\epsilon_{\overline{B}_{s}^{0} \to K^{*0}\overline{K}^{*0}} \times \epsilon_{\overline{B}_{s}^{0} \to K^{*0}\overline{K}^{*0}}^{sel/gen} \times \epsilon_{\overline{B}_{s}^{0} \to K^{*0}\overline{K}^{*0}}^{sel/gen} \times \epsilon_{\overline{B}_{s}^{0} \to J/\psi\overline{K}^{*0}}^{sel/gen} \times \epsilon_{\overline{B}_{s}^{0} \to J/\psi\overline{K}^{*0}}^{sel/gen} \times \epsilon_{\overline{B}_{s}^{0} \to J/\psi\overline{K}^{*0}}^{sel/gen} \times \delta_{\overline{B}_{s}^{0} \to J/\psi\overline{K}^{*0}}^{sel/gen} \times \mathcal{B}(vis)_{\overline{B}_{s}^{0} \to J/\psi\overline{K}^{*0}} \times \frac{f_{d}}{f_{s}} \times \frac{9}{4}$$

 $\mathcal{B}(\overline{B}{}^0 \to J\!/\!\psi \,\overline{K}{}^{*0}) \text{ of } 5.25 \times 10^{-5},$

 $\lambda_{fL:}$ overall efficiency correction depending on f_L

$B \rightarrow hh$

• Sensitive probe of NP in penguin diagrams

- Observables
 - Time-dependent CP asymmetries in $B_d \rightarrow \pi^+\pi^$ and $B_s \rightarrow K^+K^+$
 - Direct CP asymmetries

$$A_{CP} = (N_{\bar{B}\to\bar{f}} - N_{B\to f})/(N_{\bar{B}\to\bar{f}} + N_{B\to f})$$
³⁵

Direct CP violation in $B_{d/s} \rightarrow K\pi$

Raw CP asymmetry in $B^0 \rightarrow K\pi$ decays: -0.086 ± 0.033

Raw CP asymmetry in $B_s \rightarrow \pi K$ decays: 0.15 ± 0.19

$$A_{CP} (B^0 \to K^+ \pi^-) = -0.074 \pm 0.033 \pm 0.008$$
$$A_{CP} (B_s^0 \to \pi^+ K^-) = 0.15 \pm 0.19 \pm 0.02$$

Data-driven correction:

$$A_{CP} = A_{CP}^{RAW} - A_D(K\pi) - \kappa A_P$$

detector asymmetry $A_d = -0.004 \pm 0.004$

production asymmetry $A_p = -0.025 \pm 0.014 \pm 0.010$

Oscillation factors k

Channel	κ
$B^0 \to K^+ \pi^-$	0.33
$B_s^0 \to \pi^+ K^-$	0.015

HFAG

 $A_{CP}(B^{0} \to K^{+}\pi^{-}) = -0.098^{0.012}_{-0.011}$ $A_{CP}(B^{0}_{s} \to \pi^{+}K^{-}) = 0.39^{\frac{36}{\pm}}0.17$

Production asymmetries

• Physical asymmetry is related to raw asymmetry

$$A_{CP} = A_{CP}^{RAW} - A_D(K\pi) - \kappa A_P$$

- Production asymmetry measured in $B^+ {\rightarrow} J/\psi K^+$

$$A_{P} = \frac{N_{\bar{B}} - N_{B}}{N_{\bar{B}} + N_{B}}$$
$$A_{p} = -0.025 \pm 0.014 \pm 0.010$$

• Factor to take account of oscillation

$$\kappa = \frac{\int \left(e^{-\Gamma t'} \cos \Delta m t'\right) \varepsilon(t) dt}{\int \left(e^{-\Gamma t'} \cosh \frac{\Delta \Gamma}{2} t'\right) \varepsilon(t) dt}$$

Channel	κ
$B^0 \to K^+ \pi^-$	0.33
$B_s^0 \to \pi^+ K^-$	0.015

37

Detector asymmetries

- Use $D^* \rightarrow D^0(KK, \pi\pi, K\pi)\pi_s$ and untagged $D^0 \rightarrow K\pi$ of both magnet polarities to disentangle various contributions to the raw asymmetries
 - D* and D⁰ production asymmetries
 - Detector asymmetries
 - Known CP asymmetries
 - (negligible for $K\pi$)

World average

Channel	A_{CP}
$D^0 \to K^+ K^-$	-0.0016 ± 0.0023
$D^0 \to \pi^+\pi^-$	0.0022 ± 0.0021

 $A_d = -0.004 \pm 0.004$

Flavour specific asymmetry

• Physical asymmetry :

$$a_{
m fs}^s = rac{\Delta\Gamma_{
m s}}{\Delta m_{
m s}} an(\phi_{
m s})$$

 $a^d_{\mathrm{fs}}(SM) = (-6.4^{+1.6}_{-1.8}) \times 10^{-4}$, $a^s_{\mathrm{fs}}(SM) = (3.0^{+1.2}_{-1.3}) \times 10^{-5}$ [arXiv:1008.1593]

Measured asymmetry :

$$A_{\rm fs}^q = \frac{\Gamma(f) - \Gamma(f)}{\Gamma(f) + \Gamma(\overline{f})}$$
$$A_{\rm fs}^q(t) = \frac{a_{\rm fs}^q}{2} - \frac{\delta_c^q}{2} - \left(\frac{a_{\rm fs}^q}{2} + \frac{\delta_p^q}{2}\right) \frac{\cos(\Delta m_{\rm q} t)}{\cosh(\Delta \Gamma_{\rm q} t/2)} + \frac{\delta_b^q}{2} \left(\frac{B}{S}\right)^q \qquad q=s,b$$

- Use $B_s^0 \rightarrow D_s^- \mu^+ \nu$ and $B^0 \rightarrow D^- \mu^+ \nu$ with the same final state $K^+ K^- \pi^- \mu^+ \rightarrow$ same detector asymmetry δ_c^q for these modes.
- Measure the difference between B_s^0 and B^0 : $\Delta A_{fs}^{s,d} \simeq \frac{a_{fs}^s a_{fs}^d}{2}$ \rightarrow most of background and production asymmetries also cancel

R. Lambert, CERN-Thesis-2009-001