

Toshiyuki Nonaka Institute for Cosmic Ray Research, University of Tokyo On behalf of Telescope Array Collaboration

Telescope Array Experiment

TA-FD

Absolute gain: CRAYS

Three PMTs for each camera

Scattered Rayleigh photons as an absolute light source •0.508 count / photons (337.1nm) @24degrees •Systematic error: ~8%

YAP: Scintillator and RI

as a stable light source

Relative gain: Xe flasher

Xe discharge flasher as a uniform light source

Adjusted about 1% for all PMTsMonitoring in every 1hour

•Temperature dependence Measured by Incubator and LED ~-0.72%/degree

Telescope Array Surface Detector

- Solar cell+ Battery
- Wireless LAN (2.4GHz) communication
- GPS 1pps pulse are common clock for SDs.
- 50Msps FADC recording

- Scintillator : 2layer of 3m² × 1.2cm (t)
- WLF read out of scintillation light
- PMT: 2 × "ETL 9124SA"
- Power Base:
 2 × "ETL PS1806-2"
- Temperature /Humidity sensors.

Calibration Muon Peak monitor (Count/MeV) pulse height monitor (Linearity) Internal clock speed (timing)

Status monitorBattery,Solar Panel Voltage Current monitorRate monitor (> 0.3MIP, >3MIP)SD environment monitorNumber of Satellite (GPS antenna status)

==List of monitoring items==

Item	Data	Resolution
MIP histogram	12bin sum of FADC count	1FADC count 10min
Pedestal histogram	8bin sum of FADC count	1FADC count 10min
Pulse height histogram	Maximum FADC count	32FADC count 10min
Total charge histogram	128bin sum of FADC cont	$\Delta \log_2(FADCsum) = 0.2$
Power Cycle data	Battery,Solar Panel (voltage, current)	1 min
Environmental data	$temp(^{\circ}C)$, $hum(\%)$ at SD	1 min
Trigger rate	Level-0, Level-1 trigger rate	1 min
GPS status	number of satellite, Antenna status	10min

Operation status

◇ FD full observation have started 2007 Dec
 ◇ SD full observation have started Mar.2008
 →~700km² of detecting area
 θ_{zenith} <45° ~100% efficiency at E>10^{18.9}eV
 ◇ Cross boundary Trigger Nov.2008
 ◇ Hybrid Trigger Sep.2010
 ◇ Manitaring

- Monitoring
 - SD :detailed monitoring every 10min
 - FD :Atmospheric monitoring, PMT Gain montoring with Xenon light source, YAP pulser.

Operation, stability

- SD: Running >96% of duty cycle >98% of counter is fine.
- FD: ~ 7% of duty cycle,
- \rightarrow Hybrid exposure $\sim 1.5 \times 10^2 \text{km}^2 \cdot \text{yr} \cdot \text{sr} @2010$

First light from ELS

Hybrid trigger

Hybrid trigger:

When FD is triggered, FD requests the collection of signal (waveform) from SDs.

 \rightarrow Obtain SD information at shower event with much lower than SD arrays threshold energy.

 \rightarrow Increase accuracy of FD reconstruction at wide energy range.

Installed Sep 2010

The first hybrid trigger event

Energy Spectrum @TA MD,SD,Hybrid

MD mono energy spectrum

- 14 refurbish HiRes-1 telescopes & Electronics
- TAMD mono processing is identical to HiRes-1 monocular one.
 - Same program set, event selection, cuts
 - Using the same "average" atmospheric model
- The differences
 - the telescope location and pointing directions
 - Thresholds (~20% lower than HiRes-1) Aperture

Data: 2007/Dec~2008/Sep

r = 800*m*

SD Energy Estimation

Energy table from MC (First estimation)

From reconstructed event, S800, arrival direction(zenith angle) will be used for first estimation.

Event energy will be decided by applying calibration between FD and SD.

TA SD Spectrum

- May/2008 Feb/2010 Exposure ~1500km² sr yr (~AGASA 13 years)
- Cuts:
 - LDF χ^2 /ndf < 4.0
 - Border Cut > 1.2km
 - Zenith Angle < 45 degrees
 - Pointing direction uncertainty < 5 degrees
 - Fractional S800 uncertainty < 0.25

6264 events

TA FD-SD Hybrid Spectrum

<Air Shower Geometry>

Hybrid reconstruction

$$t_{i} = t_{core} + \frac{1}{c} \frac{\sin \psi - \sin \alpha_{i}}{\sin(\psi + \alpha_{i})} r_{core}$$
$$t_{core} = t_{SD} + \frac{1}{c} (r_{core} - r_{SD}) \cos \psi$$

<Longitudinal development>

Inverse Monte Carlo (IMC)

/

- •Direct comparison b/w data and MC on cameras
- •All of effect can be included.
- Database of detector response
 → High speed/statistics
- •Xmax has to be observed
- •Energy > $10^{18.65}$ eV
- •Zenith angle < 45 degree

TA FD-SD Hybrid Spectrum

TA 1.5 years of hybrid events on BR and LR station

Systematic errors on Hybrid Spectrum

Item	Systematic error
Fluorescence yield	12%
Detector	10%
Atmosphere	11%
Primary particle mass	5%
MC correction	3%
Total	19%

Chemical Composition @TA

X_max method

X_max: slant depth(g/cm²) at maximum development of shower

- Shower longitudinal development strongly depends on their primary particle type.
- FD observes shower development directly.
- Xmas is one of the most efficient parameter for determining primary particle type.

Determination by direction of the selected PMTs

$$\sum_{i} w^{i} (\boldsymbol{n} \cdot \boldsymbol{k}^{i})^{2}$$

n: Normal SDP vector kⁱ: PMT direction vector Intersect line of two SDPs

 $\boldsymbol{s} = \boldsymbol{n}_1 \times \boldsymbol{n}_2$

Resolution @10^{19-19.2}eV

	Proton	Iron
∆E/Esim	-0.8±8%	-6.2±5%
∆Xmax	-11±23g/cm ²	-11±15g/cm ²

(QGSJET01)

Data MC comparison (Stereo observation)

Average X_max

Observed <X_max> and MC event includes same detector bias.

Anisotropy @TA

Auto Correlation study using SD data

Auto Correlation study using SD data

<2.5[deg] separation angle:

311 pairs (>10EeV) for 323 pairs expected from isotropy 1 pair (>40EeV) for 0.84 Pairs expected from isotropy

♦ TA full observation have started Mar.2008

Cross boundary Trigger Nov.2008

Hybrid Trigger
Sep.2010

Operation, stability good. + Spectrum
Detailed Calibration and cross check tools.

MD, TA-Hybrid spectrum consistent with Hires1 2

X_max

Chemical composition (stereo analysis) seems consistent with proton.

Anisotropy

No small scale cluster of arrival direction were found. (>10EeV,>40EeV)

Now, correlations with number of catalogue (eg, AGN) and Large Scale Structure(LSS) with consideration of Galactic Magnetic field model are going.