Tokyo axion helioscope experiment

and

other axion experiments

Y. Inoue

International Center for Elementary Particle Physics, The University of Tokyo

for the Sumico Collaboration

Rencontres de Moriond EW2011, 18 March 2011, La Thuile, Italy

Collaborators

M. Minowa, R. Ohta, T. Mizumoto, T. Horie

Department of Physics, School of Science, The University of Tokyo

Y. Inoue

International Center for Elementary Particle Physics, The University of Tokyo

A. Yamamoto

High Energy Accelerator Research Organization (KEK)

Logo designed by → Yuki Akimoto Graduate School of Medicine, The University of Tokyo

Outline

- Introduction
 - What & how we are going to detect?
- Tokyo axion helioscope
 - Hardware, results & prospects
- Other experiments
 - CAST
 - Crystalline detectors
 - Microwave cavity (axion haloscope)
- Conclusions

Introduction

Strong CP problem

Two *independent* sources of CP violation in QCD:

$$\mathscr{L}_{\bar{\theta}} = \frac{\bar{\theta}}{32\pi^2} F_a^{\mu\nu} \tilde{F}_{a\mu\nu}, \qquad \bar{\theta} = \theta + \arg \det \mathcal{M}_q,$$

where $\begin{cases} \theta & \leftarrow \text{initial QCD ground state} \\ \mathcal{M}_q & \leftarrow \text{quark mass matrix (EW scale physics)} \end{cases}$

Neutron EDM:

 $d_n < 2.9 \times 10^{-26} \, e \, \mathrm{cm} \qquad (\bar{\theta} < 10^{-10})$

Peccei–Quinn mechanism

Global chiral U(1)_{PQ} + SSB \longrightarrow Axion (NG boson)

+ Making $\bar{\theta}$ into a dynamic parameter which should fall into the potential minimum:

$$\bar{\theta} = \theta + \arg \det \mathcal{M}_q + \boxed{\frac{a}{f_a}}$$

Axion mass:

$$m_a = \frac{\sqrt{z}}{1+z} \frac{f_\pi m_\pi}{f_a}$$

Axion-photon coupling

The axion couples to two photons:

$$\mathscr{L}_{a\gamma\gamma} = -\frac{1}{4}g_{a\gamma}aF^{\mu\nu}\tilde{F}_{\mu\nu} = g_{a\gamma}a\vec{E}\cdot\vec{B}$$

$$g_{a\gamma} = \frac{\alpha}{2\pi f_a} \left[\frac{E}{N} - \frac{2(4+z)}{3(1+z)} \right]$$

= $1.9 \times 10^{-10} \left(\frac{m_a}{1 \,\mathrm{eV}} \right) [E/N - 1.92] [\mathrm{GeV}^{-1}]$

Model dependent factor:

E/N = 0 (std. KSVZ), 8/3 (GUT DFSZ). $E = \text{Tr}(Q_{PQ}Q_{em}^2), N = \text{Tr}(Q_{PQ}Q_{c}^2)$

Exclusion plot $(g_{a\gamma}-m_a)$

Axion helioscope

[P.Sikivie, PRL51,1415(1983)]

The sun can be a powerful source of axions.

Axion helioscope

[P.Sikivie, PRL51,1415(1983)]

Buffer gas — to reach out for heavier axions

Conversion rate:

$$P_{a \to \gamma} = \frac{g_{a\gamma}^2}{2} \left| \int_0^L Be^{iqz} dz \right|^2 \lesssim \frac{g_{a\gamma}^2 B^2 L^2}{4},$$
$$q = k_\gamma - k_a \approx \frac{m_\gamma^2 - m_a^2}{2E}.$$

In vacuum, coherence is lost for $m_a \gtrsim \sqrt{\pi E/L}$...

\Downarrow

The effective photon mass in buffer gas:

$$m_{\gamma} = \sqrt{\frac{4\pi\alpha N_e}{m_e}}.$$

 N_e : electron density

Tokyo axion helioscope

Tokyo axion helioscope (Sumico)

Sumico V detector

• Track the sun $\sim 12\,{\rm hours/day}$

Gas handling system

Helium density time chart

PIN photodiode X-ray detector

- Inside OFHC shield @ T = 60 K
- 16 PIN photodiodes
 4 PIN/module
- chip: Hamamatsu S3590-06-SPL
- size: $11 \times 11 \times 0.5 \,\mathrm{mm^3/PIN}$
- active area $> 9 \times 9 \,\mathrm{mm^2/PIN}$
- inactive surface $< 0.35 \mu m$

[T.Namba *et al.,* NIMA489(2002)224] [Y.Akimoto *et al.,* NIMA557(2006)684]

Exclusion plot [Y.Inoue *et al.*, PLB668(2008)93] Upper limit (95% CL) 3×10⁻⁹ 2×10⁻⁹ ^{δaγ} [GeV⁻¹] ₆₋01×1 5×10⁻¹⁰ 0.8 0.9 1

 m_a [eV]

$$\chi^{2}(m_{a}) = \sum_{m_{\gamma}=m_{\gamma,\min}}^{m_{\gamma,\max}} \sum_{E=4 \text{ keV}}^{20 \text{ keV}} \left[\frac{N_{\text{solar}}(E,m_{\gamma}) - N_{\text{bg}}(E,m_{\gamma}) - N_{\text{theo}}(E,q)}{\sigma(E,m_{\gamma})} \right]^{2}$$

Phase III upgrades, troubles & status

- ✓ Introduced a cryogenic rupture disk (Done)
- ✓ Automated gas density control (Done)

-Sumico 2007–2008 run ——

- ✓ Reworked He pipelines for quicker evacuation (Done)
- ✓ Thermoacoustic oscillation at higher $\rho_{\rm He}$
 - \rightarrow Introduced a blind-end bellows at $T_{\rm room}$ section (Resolved)
- Thermal non-uniformity at higher ρ_{He}
 - \rightarrow Introduced new heat exchangers (Testing)
- ✓ 1st X-ray window got a puncture/crack
 → Repaired by the manifacturer (Test passed)
- **★** 2nd Spare window broken entirely by thermal stress (Alas!)

Phase III upgrades, troubles & status (gallery)

New heat exchangers

1st X-ray window repaired with epoxy

Light shinning through the 2nd X-ray window

Other experiments

CAST (CERN Axion Solar Telescope) [K.Zioutas *et al.*, PRL94,121301(2005)]

- B = 9 T, L = 9.26 m (LHC test magnet)
- Vertical $\pm 8^{\circ}$, horizontal $\pm 40^{\circ}$
- TPC, Micromegas, CCD X-ray telescope

Sumico & CAST side-by-side

Sumico	CAST
Tokyo	CERN
$4\mathrm{T} imes2.3\mathrm{m}$	$9\mathrm{T} imes 9.26\mathrm{m}$
12 hours/day	$2 imes 1.5\mathrm{hours/day}$
$^4{ m He}$ @ 5 K ($m_a \lesssim 2{ m eV}$)	4 He, 3 He @ 1.9 K ($m_{a} < 1.1 {\rm eV}$)

CAST result

Crystal detectors

- Primakoff conversion in a lattice
- Bragg condition:

 $2d\sin\theta = n\lambda$

• SOLAX — Ge $g_{a\gamma} < 2.7 \times 10^{-9} \text{GeV}^{-1}$ (95%) [A.O.Gattone *et al.*, NPB-PS70(1999)59]

- COSME Ge [A. Morales *et al.*, Astropart. Phys. 16(2002)325] $g_{a\gamma} < 2.78 \times 10^{-9} \text{GeV}^{-1}$ (95%)
- DAMA NaI(Tl) $g_{a\gamma} < 1.7 \times 10^{-9} \text{GeV}^{-1}$ (90%)

[R.Bernabei et al., PLB515(2001)6]

• CDMS — Ge $g_{a\gamma} < 2.6 \times 10^{-9} \text{GeV}^{-1}$ (95%) [Z.Ahmed et al., PRL103,141802(2009)]

Pioneers: Rochester-BNL-FNAL (RBF), Florida (UF)

ADMX (Axion Dark Matter eXperiment)

http://www.flickr.com/photos/llnl/4305091276

[S.J.Asztalos *et al.*, PRL104,041301(2010)]

- LLNL
- $B_0 = 7.6 \,\mathrm{T}$
- GaAs HFET $(T_s \sim 2 \text{ K})$
 - \rightarrow dc SQUID ($T_s = 47 \,\mathrm{mK} @ 700 \,\mathrm{MHz}$)
- Scanned $m_a = 1.9 3.53 \,\mu \text{eV}$
- Next upgrade: $T_{\text{cavity}} \sim 2 \text{ K} \rightarrow 100 \text{ mK}$

CARRACK

(<u>Cosmic Axion Research with Rydberg Atoms in resonant Cavity in Kyoto</u>) [M.Tada *et al.*, NPB-PS72(1999)164]

- Microwave photon counting using Rydberg atoms 39 K, 85 Rb, etc.; $ns \rightarrow np$, n = O(100-200)
- B = 7 T, $T_{\text{cavity}} = 10 \text{ mK}$
- Goal: cover $m_a = 8-30 \,\mu \text{eV}$ up to $g_{a\gamma} \sim \text{DFSZ}$ prediction.

http://www.ltm.kyoto-u.ac.jp/newcarrack/

Exclusion plot

Conclusions

- 2 Fronts of experimental axion searches:
 - Solar axion $m_a \sim O(eV)$ Sumico, CAST, crystals
 - Dark matter axion $m_a \sim O(\mu eV)$ ADMX, CARRACK

- Sumico Phase III
 - Sumico 2007–2008 result:

 $g_{a\gamma} < 5.6 - 13.4 \times 10^{-10} \text{GeV}^{-1} \quad (0.84 < m_a < 1.00 \,\text{eV})$

– Upgrading toward $m_a \lesssim 2 \,\mathrm{eV}$

Backup

Axion-photon oscillation

[Raffelt & Stodolsky, PRD37(1988)1237]

Wave equation for $(A_{\perp}, A_{\parallel}, a)$ plane wave propagating along the z axis:

$$\begin{pmatrix} \omega^2 + \partial_z^2 - m_\gamma^2 & 0 & 0\\ 0 & \omega^2 + \partial_z^2 - m_\gamma^2 & g_{a\gamma}B\omega\\ 0 & g_{a\gamma}B\omega & \omega + \partial_z^2 - m_a^2 \end{pmatrix} \begin{pmatrix} A_\perp\\ A_\parallel\\ a \end{pmatrix} = 0.$$

 $\downarrow \\ A_{\parallel} \rightleftharpoons a \text{ mixing}$

Notes on buffer gas

- ⁴He is used \iff CAST is using ³He
- Temperature is kept high enough above the critical point $(p_c = 0.227 \text{ MPa}, T_c = 5.1953 \text{ K})$
- X-ray absorption and decoherence due to gravity are not fatal even at $m_{\gamma} \sim 2 \, {\rm eV}$

Buffer gas container

- Welded 4 ×
 st. steel 304
 21.9 × 17.9 × 2300 mm³
 square pipes
- Wrapped with 99.999% pure Al 0.1-mm thick × 2 layers
- Thermal conductivity (measured) $\gtrsim 10^{-2}$ W/K @ 5 K, 4 T

X-ray window

Metorex C10 window (custom)

- $25\mu m$ Be foils with $1\mu m$ polyimide coating
- Supported by Ni grid
- Withstands up to 0.3 MPa
- Transmits $\gtrsim 80\%$ for $E > 3 \mathrm{keV}$

Internal calibration source

⁵⁵Fe (5.97 keV)

Internal calibration source

⁵⁵Fe (5.97 keV)

Data acquisition system

- 16 input channels
- Waveform recording:
 PIN photodiode
 Charge sens. preamp.
 Flash ADC
- Offline shaping
- Trigger: shaper + leading edge discr.
- Precise live time
- Control: CAMAC

Sumico results & prospect

✓ Phase I — vacuum Sumico 1997 run: [S.Moriyama *et al.*, PLB434(1998)147] $q_{a\gamma} < 6.0 \times 10^{-10} \text{GeV}^{-1}$ $(m_a < 0.03 \,\text{eV})$ ✓ Phase II — low density ⁴He ($\rho_{\rm He} \leq 10^5 {\rm Pa}/298 {\rm K}$) Sumico 2000 run: [Y.Inoue *et al.*, PLB536(2002)18] $q_{a\gamma} < 6.8 - 10.9 \times 10^{-10} \text{GeV}^{-1}$ (0.05 < $m_a < 0.27 \,\text{eV}$) IV Phase III — high density ⁴He Sumico 2007–2008 run: [Y.Inoue *et al.*, PLB668(2008)93] $g_{a\gamma} < 5.6 - 13.4 \times 10^{-10} \text{GeV}^{-1}$ (0.84 < $m_a < 1.00 \,\text{eV}$)

Upgrades are continuing...

Goal: $p \lesssim 0.1 \,\mathrm{MPa} @ T = 6 \,\mathrm{K} \longrightarrow m_a \lesssim 2 \,\mathrm{eV}$

Pioneering axion helioscope

[Lazarus et al., PRL69,2333(1992)]

- BNL-Rochester-FNAL
- $B = 2.2 \,\mathrm{T}$, $L = 1.8 \,\mathrm{m}$, fixed dipole magnet
- He gas (0, 50, 100 Torr)
- Proportional chamber (Ar 90% CH₄ 10%)
- 15 minutes/day (sunset)
- $g_{a\gamma} < 3.6 \times 10^{-9} \text{GeV}^{-1}$ for $m_a < 0.03 \text{ eV}$, $g_{a\gamma} < 7.7 \times 10^{-9} \text{GeV}^{-1}$ for $0.03 \text{ eV} < m_a < 0.11 \text{ eV}$.

cf. Solar age: $g_{a\gamma} < 2.4 \times 10^{-9} \text{GeV}^{-1}$