The recent results of solar neutrino measurement in Borexino

Yusuke Koshio LNGS, INFN, Italy On behalf of Borexino collaboration

What's solar neutrino?

 \rightarrow ~10⁷years radiated from the center to the surface.

Physics motivation

- Neutrino physics
 - MSW-LMA scenario is our current understanding
 - Results of ⁸B neutrinos, radiochemical experiments and reactor experiment
 - The survival probability in ν_e (Pee) was very poor constraint before Borexino.
- Solar Physics
 - Sub-MeV Solar neutrino flux, (⁷Be, CNO, pep, pp...)
 - Metallicity (high/low) controversy

Goal of Borexino measurement

- ✓ ⁷Be neutrino rate with a total error < 5% (10% in previous)
- ✓ Also ⁸B neutrino rate
- Day/Night flux asymmetry, which 0.3 is sensitive MSW-LOW region. (in progress)

Laboratori Nazionali del Gran Sasso

TERAMO

120km from Roma

1300m underground (3800m w.e.)

BOREXINO

Physics target : • Solar Neutrinos $v_{solar} + e \rightarrow v + e$ (ES)

The wide energy range in real time are measurable, especially; ⁷Be (mono-energetic 0.862MeV) ⁸B (upto 16MeV) Also CNO, pep, and possibly pp in future

Geo Neutrinos

 Supernova neutrinos

• etc

Detection principle

- Solar neutrino scatter on electron in liquid scintillator
 - Scintillation light
 - High light yield (~500 p.e./MeV)
 - Low energy threshold
 - Good energy resolution
 - Pulse shape discrimination
 - but...
 - No ν direction
 - No way to distinguish \boldsymbol{v} and radioactivity
 - \rightarrow Extreme radiopurity is required \rightarrow NIM A, 609, 1 (2009) 58
- Detector calibration
 - Background events in normal data were used until previous
 - Internal source calibrations were done in 2009.
 - Position response (~6% systematic error in previous)
 - Reduce the fiducial volume uncertainty
 - Modify the position reconstruction algorithm.
 - Energy response (~6% systematic error in previous)
 - Reduce the energy scale uncertainty.
 - Tuning the MC simulation
 - Particle identification (alpha-beta discrimination)
 - Modify the algorithm, and tuning the MC simulation.

	γ							ĥ	3	α		n		
	dopant dissolved in small water vial						²²² F liq.	Rn Ioa scint.	ded vial		Am-Be	9		
	⁵⁷ Co	¹³⁹ Ce	²⁰³ Hg	⁸⁵ Sr	⁵⁴ Mn	⁶⁵ Zn	⁶⁰ Co	⁴⁰ K	¹⁴ C	²¹⁴ Bi	²¹⁴ Po	n-p	n + ¹² C	n+Fe
Energy (MeV)	0.122	0.165	0.279	0.514	0,834	1.1	1.1 1.3	1.4	0.15	3.2	(7.6)	2.2	4.94	~7.5

clear tag from Bi-Po fast coincidence

Position and Energy calibration

Reduction and signal extraction

- A spectral fit is applied including the following signal + all intrinsic back ground components.
 - ⁷Be, ⁸⁵Kr, ¹⁴C, ¹¹C
 - ²¹⁰Bi (very similar to CNO in this limited energy region)
 - pp, pep, ⁸B, and CNO neutrinos fixed at SSM-LMA value
- Fit with and without statistical subtraction of ²¹⁰Po events, based on α/β pulse shape discrimination.
- Two independent way (MC based and analytical) were applied.

Result of ⁷Be rate Preliminary

⁷Be rate (E=862 keV line) in 750 days of data $46.0 \pm 1.5 \text{ (stat)} \pm 1.3 \text{ (sys)}$ counts/(day x 100t) (total uncertainty is 4.3%)

Source of systematic error

Tot. Scint. mass	±0.3 %
Live time	±0.1 %
Fraction of good events removed by cuts	±0.6 %
Energy scale	±1.3 %
Fiducial mass	±1.3 %
Fit method (a/b subtraction)	±1.0 %
Fit assumption	±1.7 %
Total syst. error	±2.73 %

Compare to the expected ⁷Be rate

Measured rate: Preliminary 46.0 \pm 1.5 (stat) \pm 1.3 (sys) cpd/100ton

Hypothesis	Expected rate
No oscillation +High Metallicity	74±4
No oscillation + Low Metallicity	67±4
Oscillation MSW + High Metallicity	48±4
Oscillation MSW + Low Metallicity	44±4

Discussion

- Measurement in Borexino confirms MSW-LMA scenario. (n)
- Detailed neutrino oscillation analysis is now on going, present soon.
- Hard to discriminate between High and Low metallicity model yet.

 \rightarrow CNO solar neutrino measurement in future is crucial.

Probe MSW-LMA scenario directly

Compare to the expected ⁷Be rate

Measured rate: Preliminary 46.0 \pm 1.5 (stat) \pm 1.3 (sys) cpd/100ton

Hypothesis	Expected rate
No oscillation +High Metallicity	74±4
No oscillation + Low Metallicity	67±4
Oscillation MSW + High Metallicity	48±4
Oscillation MSW + Low Metallicity	44±4

Discussion

- Measurement in Borexino confirms MSW-LMA scenario
- Detailed neutrino oscillation analysis is now on going, present soon.
- Hard to discriminate between High and Low metallicity model yet.

 \rightarrow CNO solar neutrino measurement in future is crucial.

Day/Night asymmetry in ⁷Be rate

- In the MSW scenario, the flux rate in Night is higher than Day because of the regeneration effect.
- In the 7Be energy region, NO effect expected in MSW-LMA region, but large in MSW-LOW region (~20%).

Moriond 2011/3/19

15

Conclusion

- Borexino has been running well since May 2007.
- Internal source calibration had been done in 2009.
 It is successful to reduce the systematic error.
- Total ⁷Be neutrino rate is 46.0±1.5(stat.)±1.3(sys.) cpd/100ton (preliminary)
- Detailed neutrino oscillation analysis is now on going, but the MSW-LMA scenario is confirmed in Borexino data.
- New results of ⁷Be rate and day/night asymmetry with reduced uncertainties will be published soon.
- Future;
 - Search for pep and CNO solar neutrinos is now in progress.
 - Purification with water extraction is in progress to reduce the internal background.
 - Search for pp neutrinos is also one of important theme in future for complete understanding the solar interior.

Thank you for your attention

Backup

Metallicity controversy inside the sun

- "Improved" calculation of the solar composition changes the fluxes.
 - Z/X=0.0229(GS98)→0.0165(AGS05)

(X:hydrogen, Y:helium, Z:others)

- But, disagree with helioseismology ??
- Observed ⁸B flux

 $\phi_{B_{B}} = 5.3^{+0.1}_{-0.2} \times 10^{6} \, cm^{-2} s^{-1}$

- Precise ⁷Be flux may useful information.
- CNO v observation may solve the problem.
 - Study in progress in Borexino
 - One of goal for SNO+

?? pp		GS98	AGS05		
		5.97x10 ¹⁰	6.04x10 ¹⁰		
	рер	1.41x10 ⁸	1.45x10 ⁸		
	hep	7.90x10 ³	8.22x10 ³		
~10%	⁷ Be	5.07x10 ⁹	4.55x10 ⁹		
	⁸ B	5.94x10 ⁶	4.72x10 ⁶		
	¹³ N	2.88x10 ⁸	1.89x10 ⁸		
~30%	¹⁵ O	2.15x10 ⁸	1.34x10 ⁸		
	¹⁷ F	5.84x10 ⁶	3.25x10 ⁶		

α/β discrimination

Previous results (2008)

Background suppression

• γs from rocks, PMT, tank, nylon vessel

- Detector design: concentric shells to shield the inner scintillator
- Material selection and surface treatment
- Clean construction and handling
- Internal background (²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁸⁵Kr, ²²²Rn)
 - Scintillator purification:
 - Distillation (6 stages distillation, 80 mbar, 90 ° C)
 - Vacuum Stripping by LAK N₂ (²²²Rn: 8 μBq/m³, Ar: 0.01 ppm, Kr: 0.03 ppt)
 - Humidified with water vapor 30%
 - Master solution (PPO) purification:
 - Water extraction (5 cycles)
 - Filtration
 - Single step distillation
 - N₂ stripping with LAKN
 - Leak requirements for all systems and plants < 10⁻⁸ atm/cc/s
 - Critical regions (pumps, valves, big flanges, small failures) were protected with additional nitrogen blanketing

Primary sources of radio impurities

	source	Typical Concentrations	Borexino level	Removal strategy
¹⁴ C	Cosmic ray activation of ¹⁴ N	¹⁴ C/ ¹² C~10 ⁻¹²	¹⁴ C/ ¹² C<10 ⁻¹⁷	Old carbon (solvent from oil)
⁷ Be	Cosmic ray Activation of ¹² C	~3 cpd/ton	< 0.01 cpd/ton	Distillation, underground storage
²³⁸ U, ²³² Th	Suspended dust, organometallics	~ 1ppm in dust ~ 1ppb stainless steel ~ 1ppt IV nylon	~10 ⁻¹⁶ g/g(PC)	Distillation, filtration
K _{nat}	Suspended dust, Contaminant found in fluor	~ 1ppm in dust	<10 ⁻¹³ g/g(PC)	Distillation, water extraction, filtration
²²² Rn	Air and emanation from materials	~ 10Bq / m³ in air	~ 70 μBq / m ³ in PC (0.3ev/day/100tons)	Nitrogen stripping
²¹⁰ Bi, ²¹⁰ Po	²¹⁰ Pb decay	2 x 10 ⁴ cpd/ton from exposing a surface to 10Bq/m ³ of ²²² Rn	<0.01 cpd/ton	Surface cleaning
⁸⁵ Kr, (³⁹ Ar)	air	1.1Bq/m ³ (13mBq/m ³) in air	$0.16 \mu Bq/m^3$ (0.5 μ Bq/m^3) in N_2 0.01 events/day/ton	Nitrogen stripping Morio

11/3/19 23

Background : ²¹⁰Po

- In the start, ~6000 cpd/100ton ٠
- The origin of the contamination is not known
- It is NOT in equilibrium with ²³⁸U nor ²¹⁰Pb
- It decays away as expected, (life time 200days)
- Can be rejected by pulse shape discrimination.
- The statistical subtraction is also used for spectrum fit.
- As for the ²¹⁰Bi, since no direct evidence, taken as a free parameter for spectrum fit.

Moriond

24

Background : ⁸⁵Kr

- Probably because of a few litter air leak happened during filling.
- Since the spectrum of the β decay by ⁸⁵Kr is similar to the ⁷Be recoil electron spectrum, an estimation of the amount is important.
- The contamination can be measured directly by means of a relatively rare but easy-to-measure decay to excited 85Rb*.

- Measured with 751days of data
- 32 candidate events in final data sample
 - Calculate ⁸⁵Kr contamination is

 30 ± 5 cpd / 100ton

 \rightarrow Taken as free parameter in the spectrum fit.

⁸B neutrino measurement in Borexino

PRD 82 (2010) 0033006

Final spectrum above 3MeV

⁸B solar neutrino rate in Borexino

	3.0–16.3 MeV	5.0–16.3 MeV
Rate [cpd/100 t]	$0.22{\pm}0.04{\pm}0.01$	$0.13{\pm}0.02{\pm}0.01$
$\Phi^{\mathrm{ES}}_{\mathrm{exp}}$ $[10^6 \ \mathrm{cm}^{-2} \mathrm{s}^{-1}]$	$2.4{\pm}0.4{\pm}0.1$	$2.7{\pm}0.4{\pm}0.2$
$\Phi^{ m ES}_{ m exp}/\Phi^{ m ES}_{ m th}$	$0.88 {\pm} 0.19$	$1.08{\pm}0.23$

Comparison with the expectation

