

Search for the SM Higgs Boson in Dilepton + E_T final state

Ruchika Nayyar University of Delhi, India on behalf of the DØ collaboration

Brief Outline of the talk:

- * Introduction
- * Analysis Selection
- * Multivariate Methods
- * Results

Young Scientist Forum ElectroWeak Session Rencontres de Moriond March 2011

Introduction

- Higgs Boson, massive scalar particle predicted by SM yet to be observed !
- The analysis considers all SM Higgs production modes:
 - Gluon fusion $gg \rightarrow H \ (\sigma = 0.2 1.0 \text{ pb})$
 - Associated production Z/WH ($\sigma = 0.01 0.3 \text{ pb}$)
 - Vector boson fusion $qq \rightarrow H$ ($\sigma = 0.01 0.1 \text{ pb}$)
- Above 130 GeV Higgs mass, the dominant decay mode is $\rm H \,{\scriptstyle \rightarrow}\, WW^*$
- Three dilepton final states considered (eµ/ee/µµ)

- Combined dilepton channel has the highest sensitivity to the Higgs Boson at $m_{_{\rm H}}$ =165 GeV

Background to this search signal:

- $Z/\gamma^* \rightarrow ll \text{ (instrumental } \mathcal{K}_T)$
- multijet (jets faking as lepton)
- W+jets (one real lepton)
- tt (real leptons and real jets)
- SM Diboson production (WW/WZ/ZZ)

Clean signal signature: - Two high p_T leptons - Oppositely charged

- High missing E_{T}

PreSelection

Multivariate Techniques

- Since at pre-selection S/B is very low, multivariate techniques (DTs) are used to separate the signal from backgrounds.
- $ee/\mu\mu$ channels use DTs twice
 - \succ to reject the Z/ γ^* background
 - Separate signal from other bkgds.
- The DT's are trained for each jet bin and for each higgs mass point.

The signal as well as the background composition changes with jet bin.
0-Jet : Diboson vs. gg → H
2-Jet : tt vs. Z/WH

- Different discriminating input variables used in each jet bin to enhance the signal seperaton (Eg. b-tagging in the 2 jet bin against tt̄).
- The output of the Final Discriminant (FD) is used to search for a signal or to place limits on the Higgs boson $\sigma_{incl} (p\bar{p} \rightarrow H+X)$.

Results

- No significant excess is observed hence exclusion limits are set at 95 $\%~\rm C.L$.
- With the increased sensitivity, we are able to exclude 165 GeV at 95 % C.L, exp(obs) limit is 0.97(0.91).
- Good sensitivity at low mass as well. At 115 GeV, exp(obs) limit is 8.55(9.95).
- Major improvments in the expected sensitivity since summer 2010 update.
- The channel plays a dominant role in the SM high mass Higgs combination!

Results

- No significant excess is observed hence exclusion limits are set at 95 $\%~\rm C.L$.
- With the increased senstivity, we are able to exclude 165 GeV at 95 % C.L, exp(obs) limit is 0.97(0.91).
- Good sensitivity at low mass as well. At 115 GeV, exp(obs) limit is 8.55(9.95).
- Major improvments in the expected sensitivity since summer 2010 update.
- The channel plays a dominant role in the SM high mass Higgs combination!

Results

- No significant excess is observed hence exclusion limits are set at 95 % C.L.
- With the increased sensitivity, we are able to exclude 165 GeV at 95 % C.L, exp(obs) limit is 0.97(0.91).
- Good sensitivity at low mass as well. At 115 GeV, exp(obs) limit is 8.55(9.95).
- Major improvments in the expected sensitivity since summer 2010 update.
- The channel plays a dominant role in the SM high mass Higgs combination!

95% CL Limit / SM

10

DØ Preliminary, L=8.1 fb

 $H \rightarrow WW$ (eµ, ee, µµ)

95% CL Limit / SM

R. Nayyar Moriond EWK YSF 2011

Observed

Expected ±1

Expected +2c

---- Expected

(a)

Backup Slides For More Information

DØ Detector

Tracking : Silicon Microstrip tracker Central Fibre trackers in a 2T mag. field

Calorimeter : Hermetic coverage with A Central & 2 End Cap calorimeters

> Muon System: Outermost system Scintillators & Wire chambers in 1.8 T mag.field

15/03/11

Event Selection Details

* ee channel

- two opposite charged electrons, required to originate from same vertex.
- leading electron with $p_{_{\rm T}}$ >15 GeV and trailing electron with $p_{_{\rm T}}$ > 10 GeV
- M_{ee} >15 GeV
- jets with pT > 20 GeV

Final Selection : Train a BDT against the Z/γ^* background and place a cut on this discriminant. * eµ channel

- two leptons (oppositely charged) required to originate from the same vertex.
- electron $p_T > 15 \text{ GeV}$
- muon $p_T > 10 \text{ GeV}$
- ΔR (e,μ) >0.3
- jets with pT > 20 GeV

Final Selection : a cut is applied on the min. M_t > 20 GeV

* μμ channel

- oppositely charged dimuons originating from the same vertex.
- leading muon with $p_T > 15$ GeV and trailing muon with $p_T > 10$ GeV
- ΔR (μ,jet) >0.1
- calorimeter isolation < 10 GeV
- jets with pT > 20 GeV

Final Selection : Train a BDT against the Z/γ^* background and place a cut on this discriminant.

BackGround Rejection

- To reduce the massive Z/γ^* background, di-electron and dimuon channel train a multivariate discriminant.
- This discriminant is trained against Z/γ^* background only, for each jet bin and for each Higgs mass point.
- Different discriminating input variables are used to seperate the signal. (P_{t} , Et, $\Delta \phi_{1112}$..)
- A cut is applied on this discriminant. The choice of the cut depends on the jet bin and m_{..}
- The electron-muon channel does not use a mutlivariate discriminant and rather place a requirement on $M_{_{\!\!\!\!\!\!}}^{\,\rm min}$ to reject the Z/γ^* as well as the multijet background.

At Pre-Selection

TABLE I: Expected and observed number of events in each jet multiplicity at preselection in the $e\mu$, ee and $e\mu$ final states. The signal assumes a Higgs boson mass of 165 GeV.

	Data	Total Background	Signal	$Z \to ee$	$Z \rightarrow \mu \mu$	$Z \to \tau \tau$	$t\bar{t}$	W+jets	Diboson	Multi-jet
$e\mu$:										
0 jets	8505	8565.6	16.9	219.2	666.9	5292.6	17.5	613.6	604.6	1151.2
1 jet	1396	1421.7	8.2	30.6	93.9	660.0	140.3	126.7	93.3	276.7
≥ 2 jets	512	509.5	3.9	5.1	19.6	119.0	284.9	34.4	16.2	30.4
ee:										
0 jets	447698	444084.1	8.4	433776.7	-	3820.1	11.2	658.7	448.2	5369.2
1 jet	59806	60218.6	5.2	57115.0	-	645.2	88.8	184.5	201.9	1983.4
≥ 2 jets	9352	9385.3	3.6	8622.1	-	111.1	189.0	22.1	154.6	286.5
$\mu\mu$:										
0 jets	592539	598085.0	11.3	-	590715.5	4995.3	9.5	296.9	597.6	1470.2
1 jet	79759	81791.7	6.9	-	80333.2	696.4	95.6	59.2	260.8	346.6
$\geq 2~{\rm jets}$	13574	14219.1	5.8	-	13521.4	117.8	258.3	11.4	222.2	87.9

At Final-Selection

TABLE II: Expected and observed number of events in each jet multiplicity after the final selection in the $e\mu$, ee, and $\mu\mu$ final states. The signal assumes a Higgs boson mass of 165 GeV.

	Data	Total	Background	Signal	$Z \rightarrow ee$	$Z \rightarrow \mu \mu$	$Z \to \tau \tau$	tt	W + jets	Diboson	Multi-jet
$e\mu$:											
0 jets	1074	1163.5	± 145.4	16.0	16.9	74.7	89.9	14.1	462.8	473.2	31.9
1 jet	392	373.7	± 58.7	7.2	3.6	15.9	75.0	109.6	86.0	67.9	15.7
≥ 2 jets	280	285.7	± 41.4	3.2	1.1	3.9	21.8	220.6	24.2	10.2	3.9
ee:											
0 jets	676	715.8	\pm 89.9	7.2	108.5	-	9.1	6.1	376.8	205.3	10.0
1 jet	836	831.9	± 144.5	4.2	477.6	-	83.5	75.4	125.0	56.9	14.2
$\geq 2~{\rm jets}$	477	442.6	\pm 73.9	2.4	201.7	-	42.9	160.8	13.9	17.1	6.2
$\mu\mu$:											
0 jets	612	689.7	± 60.7	9.3	-	201.8	2.7	3.8	136.6	240.6	104.2
1 jet	1420	1313.2	± 173.3	5.5	-	969.1	109.8	76.4	38.0	74.4	45.6
$\geq 2~{\rm jets}$	888	890.8	± 135.4	3.7	-	579.6	46.8	209.4	7.2	28.2	19.5

-

DT Details

BDT Settings

- 200 trees;
- number of variables used per node splitting = 8;
- maximal-depth of the tree = 9;
- minimum events per final leaf = 50;
- UseYesNoLeaf flag is set as false;
- UseRandomisedTrees flag is set as true;
- SeparationType is set to GiniIndex;
- NoPruning.

List of Inputs to DT against Z/γ*:

- leading lepton pT
- -trailing lepton pT
- invariant dilepton Mass
- $-\Delta \Phi(l,l)$
- -Æ_T
- $-M_{\perp}^{\min}$
- $\Delta \Phi(l, E_T)_{max/min}$
- leading and trailing jet pT
- Δη(j1,j2)
- invariant mass of the dijet system
- $\Delta \Phi(\text{jet,}E_{T})_{\text{max/min}}$
- Final discriminant All above and :
- likelihood of the electrons
- quality of the muon
- Number of hits in the first layer of the tracker
- track isolation of Muons.

Limit Setting

Test the background-only (B) and the signal + background (S+B) hypoteses using a Profile Likely Ratio test, as implemented in COLLIE (COnfidence Level LImit Evaluator).

Take into account the following systematic uncertainties:

- theoretical cross sections
- lepton momentum calibration
- jet reconstruction efficiency and JES
- modeling of the pT of H, WW, Z
- modeling of the multijet background

Generate two ensembles of pseudo-experiments for the two hypotesis, and using their probability distributions, compute the log-Likelihood-Ratio (LLR):

$$LLR = -2\ln \frac{\frac{e^{-(s+b)}(s+b)^d}{d!}}{\frac{e^{-b}b^d}{d!}}$$

Given the H0(null) and H1(test) hypothesis, we define:

CL_b= fraction of H0 pseudo experiments less signal like than data

Cl_{s+b} = fraction of H1 psuedo-experiments less signal like than data

$$CL_{s} = \frac{CL_{s+b}}{CL_{b}}$$

R. Nayyar Moriond EWK YSF 2011