

Search for $B_{(s,d)} \rightarrow \mu \mu$ in LHCb

Diego Martinez Santos (CERN)

(on behalf of the LHCb Collaboration)

CERN-PH-EP-2011-029, submitted to PLB <u>http://arxiv.org/abs/1103.2465</u>

Outline

- Observables: Branching Ratios (BR) of $B_{s,d} \rightarrow \mu \mu$
- 1 Why do we want to measure that?
 - indirect probe for New Physics(NP)
- 2 How do we do it? (Analysis strategy)
 - How to find such a rare decay and disentangle from background
 - Normalization and Calibration to get a correct BR
- 3 What did we get with 2010 data?
 - Interesting results
 - Amazing prospects

Indirect Approach

• $B_{s,d} \rightarrow \mu \mu$ can access NP through new virtual particles entering in the loop \rightarrow indirect search

• Indirect approaches can access higher energy scales and see NP effects earlier:

•3rd quark family inferred by Kobayashi and Maskawa (1973) to explain CP V in K mixing (1964). Directly observed in 1977 (b) and 1995 (t)

•Neutral Currents discovered in 1973, Z⁰ directly observed in 1983

• Roundness of Earth (Eratosthenes, c.III B.C) discovered ~2300 years before direct observation

~2.3 k years till the direct observation...

Eratosthenes

SM and New Physics

This decay is very suppressed in SM :

 $\begin{array}{l} BR(B_{\rm s} \rightarrow \mu \mu) \;\; = \; (3.2 \pm 0.2) x 10^{-9} \\ BR(B_{\rm d} \rightarrow \mu \mu) \;\; = \; (1.0 \pm 0.1) x 10^{-10} \end{array}$

Experimental upper limit still one order of magnitude above such values. @ 95% CL:

 $\begin{array}{l} {\rm BR}({\rm B_s} \to \mu \mu) \ < 4.3 {\rm x10^{-8}} \\ {\rm BR}({\rm B_d} \to \mu \mu) \ < 0.76 {\rm x10^{-8}} \, ({\rm CDF}, \, 3.7 \, {\rm fb^{-1}}, \, {\rm prel.}) \\ {\rm BR}({\rm B_s} \to \mu \mu) \ < 5.1 {\rm x10^{-8}} \ \ ({\rm D0}, \, 6.1 \, {\rm fb^{-1}}, \, {\rm publ.}) \end{array}$

But in NP models it can take any value from << SM (e.g, some NMSSM) up to current experimental upper limit (e.g. SUSY at high tanβ)

 \rightarrow <u>Whatever the actual value is, it will have</u> <u>an impact on NP searches</u>

s

Best fit contours in tanβ vs MA plane in the **NUHM1** model [*O. Buchmuller et al,* Eur.Phys.J.C64:391-415,2009]

Private calculation using SuperIso program, (F. Mahmoudi, arXiv: 08083144) and SoftSusy (B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305-331) ⁵

LHCb

- Low angle spectrometer
- Very efficient trigger
- Good particle identification performance
- Precise reconstruction:
 - Separation production vertex decay vertex $\sigma(IP)$ ~ 25 μm
 - Invariant mass $\Delta p/p \sim 0.35-0.55\%$
 - $B_{s,d} \rightarrow \mu \mu$ signature:
 - Hits in muon detector
 - μμ pair has B invariant mass
 geometrical & kinematical signature: pt, detachment of decay vertex

Analysis strategy

• Selection cuts in order to reduce the amount of data to analyze. LHCb trigger selects > 90% of the signal that is interesting for the offline analysis.

- Classification of $B_{s,d} \rightarrow \mu \mu$ events in bins of a 2D space
 - Invariant mass of the µµ pair

• MultiVariate discriminant variable combining geometrical and kinematical information about the event: "Geometrical Likelihood" (GL)

•Flat distributed for signal, background peaks at 0

• Control channels to get signal and background expectations w/o relying on simulation

 \bullet Compare expectations with observed distribution. Results combined using $\rm CL_s$ method

• S-B separation relies strongly on this variable

• Trained using MC samples of $B_s \rightarrow \mu \mu$ signal and $bb \rightarrow \mu \mu$ background.

• Distributions taken from data to not rely on the accuracy of the simulation

• Distribution of real signal obtained by looking at $B \rightarrow h^+h^-$ in real data. Similar to MC expectation.

• Background distribution is obtained from data by interpolating from mass sidebands in GL bins

Invariant Mass

• Signal distribution depends on the actual mass resolution of LHCb in the B mass region (resolution depends on mass, almost linearly)

• Measured in data by **interpolating from dimuon resonances** (J/ ψ (m<mB), Y (m>mB)...) **and** looking at **B** \rightarrow **h**⁺**h**⁻ (B_{d,s} \rightarrow K⁺ π ⁻, B_d \rightarrow π ⁺ π ⁻, B_s \rightarrow K⁺K⁻)

• μμ background yield in mass bins is interpolated from mass sidebands

Normalization

• Three channels are used, each one with different (dis)advantages:

•B⁺
$$\rightarrow$$
 J/ ψ ($\rightarrow \mu\mu$)K⁺:

•Similar trigger (muon triggers) to the signal, similar particle identif.

•Well known BR, but is B⁺ and not B_s \rightarrow ~13% systematic for B_s \rightarrow µµ

•Different number of tracks in the final state

Normalization factors:

 $\alpha(B_d) = (2.27 \ 0.18)x10^{-9}$ $\alpha(B_s) = (8.2 \ 1.3)x10^{-9}$

Normalization

• Three channels are used, each one with different (dis)advantages:

•
$$B_s \rightarrow J/\psi(\rightarrow \mu\mu)\phi (\rightarrow K^+K^-)$$
:

•Similar trigger (muon triggers) to the signal, similar particle identif.

• It's a B_s, but BR known only with 26% precision

•Different number of tracks in the final state

Normalization

• Three channels are used, each one with different (dis)advantages:

• $B_d \rightarrow K^+\pi^-$

•Different trigger (used triggered on the underlying event/other b used)

•Same kinematics, number of tracks in final state

•Well known BR, but is B_d and not $B_s \rightarrow \sim 13\%$ systematic for $B_s \rightarrow \mu\mu$

Normalization factors:

 $\alpha(B_d) = (1.99 \ 0.40) \times 10^{-9}$ $\alpha(B_s) = (7.1 \ 1.7) \times 10^{-9}$

Observed pattern and Result (B_s)

 $BR(B_s \rightarrow \mu\mu) < 4.3 (5.6) \ 10^{-8} @ 90 (95\% CL)$

BR(B_s → $\mu\mu$) < 4.3x10⁻⁸ @ 95% CL(CDF, prelim) BR(B_s → $\mu\mu$) < 5.1x10⁻⁸ @ 95% CL(D0, publish.) Expected are: 5.1 (6.5)

Observed pattern and Result (B_d)

 $BR(B_d \rightarrow \mu\mu) < 1.2 (1.5) \ 10^{-8} @ 90 (95\% CL)$

 $BR(B_s \rightarrow \mu\mu) < 0.76 \times 10^{-8} @ 95\% CL(CDF, prelim)$ Expected are: 1.4 (1.8)

Extrapolated sensitivity

LHCb can provide <u>VERY</u> interesting results in one year from now!

- **Conclusions**
- $B_{s,d} \rightarrow \mu \mu$ is an interesting probe of physics beyond the Standard Model
- First LHCb result on BR($B_{s,d} \rightarrow \mu \mu$)

BR(B_s→µµ) < 4.3 (5.6) 10⁻⁸ @ 90 (95% CL) BR(B_d→µµ) < 1.2 (1.5) 10⁻⁸ @ 90 (95% CL)

- Those are comparable with current best ones
- Extrapolation to 2 fb⁻¹ shows that LHCb can find/exclude BR($B_{s,d} \rightarrow \mu\mu$) from ~10⁻⁸ to quite close to SM prediction

Backup

Background yield

• Interpolation in the 4 GL bins gives in "one shot" the 2D distribution GL vs Mass in the search window (60 MeV around the B mass)

Peaking background
 (B→h⁺h⁻ wrongly identified as muons) negligible for current amount of data

 $B_s \rightarrow \mu^+ \mu^-$ and $B \rightarrow h^+ h^-$

 $B \rightarrow J/\psi(\mu^+\mu^-)X$

Bs2MuMuNoMuID				Detached J/ψ			
	Cut	value		cut	value		
μ / h	track χ^2/ndf	<5	μ	track χ^2/ndf	<5		
201 440	IPS	>5		IPS	>5		
				ISMUON	true		
$B_{(s)}$	Δm	$< 600 \text{ MeV}/c^2$	J/ψ	Δm	$< 100 \text{ MeV}/c^2$		
	DOCA	<0.3 mm		DOCA	<0.3 mm		
	vertex χ^2	<15		vertex χ^2	<15		
	VDS	>15		VDS	>13		
	IPS	< 5					

We checked the stability of the results with different fit parameterizations Single exponential, double exponential, linear fit

Table 45: Number of background events predicted by exponential, double exponential and linear interpolation in each GL_{KS} bin.

GL _{KS} bin	exp.	double	linear in 5215.1 – ΔM , 5423.1 + ΔM (MeV/ c^2)			
		exp.	$\Delta M=600$	$\Delta M=300$	$\Delta M=200$	$\Delta M=100$
0.0 - 0.25	590 ± 11	580 ± 12	625 ± 10	596 ± 14	599 ± 19	582 ± 25
0.25 - 0.5	13.6 ± 1.7	12.8 ± 1.4	15.1 ± 1.6	15.6 ± 2.3	14.6 ± 2.8	$13.5^{+4.9}_{-3.6}$
0.5 - 0.75	$2.91\substack{+0.74 \\ -0.64}$	$3.02\substack{+0.75\\-0.66}$	3.98 ± 0.83	$2.8^{+1.4}_{-1.0}$	$2.1\substack{+1.6\\-1.0}$	$2.1\substack{+2.7\\-1.4}$
0.75 - 1.0	$0.17\substack{+0.20 \\ -0.15}$	$0.31\substack{+0.31 \\ -0.25}$	$0.69^{+0.54}_{-0.33}$	$0.69\substack{+0.90\\-0.45}$	$0.5\substack{+1.2 \\ -0.4}$	$0.0\substack{+1.9 \\ -0.0}$

Decay Physics in SM

Branching Ratio (BR) as a function of Wilson Coefficients ("effective" theory) is:

$$BR(B_{q} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} |V_{tb}^{*}V_{tq}|^{2} \tau_{Bq}M_{Bq}^{3}f_{Bq}^{2}\sqrt{1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}} \times \left\{M_{Bq}^{2}\left(1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}\right)C_{q}^{2} + \left[M_{Bq}O_{P} + \frac{2m_{\mu}}{M_{Bq}}C_{10}\right]^{2}\right\}$$

 $C_{S, P} \rightarrow$ scalar and pseudo scalar are negligible in SM

 C_{10} gives the only relevant contribution

This decay is very suppressed in SM (BR very small, but precisely predicted): $BR(B_s \rightarrow \mu\mu) = (3.2 \pm 0.2) \times 10^{-9} \quad BR(B_d \rightarrow \mu\mu) = (1.0 \pm 0.1) \times 10^{-10}$

bin	$B^0 \to \pi^+ \pi^-$	$B^0 \to K^+ \pi^-$	$B^0_s \to K^+ K^-$
0.0 - 0.25	$(-2.8 \pm 1.1)\%$	$(-1.1 \pm 0.9)\%$	$(0.7 \pm 1.1)\%$
0.25 - 0.5	$(0.8 \pm 1.1)\%$	$(0.4 \pm 0.9)\%$	$(0.3 \pm 1.1)\%$
0.50 - 0.75	$(2.4 \pm 1.1)\%$	$(0.4 \pm 0.9)\%$	$(-0.6 \pm 1.1)\%$
0.75 - 1.0	$(-0.4 \pm 1.1)\%$	$(0.3 \pm 0.9)\%$	$(-0.4 \pm 1.1)\%$

$\epsilon^{\text{REC}} (B_s \rightarrow \mu^+ \mu^-) = 10.2\%$

MC estimates for the efficiency ratios:

1) From $\epsilon^{TRIG} = \epsilon^{TIS} N^{TRIG} / N^{TIS}$, we obtain

 $\epsilon_{Trg}^{J\!/\psi} ~=~ (85.9\pm0.9_{\rm stat}\pm2.0_{\rm syst})\%$

for $B \rightarrow J/\psi(\mu^+\mu^-) X$ events

2) Use the same events to produce a trigger efficiency map (p_T , IP); convolution with the harder muon spectra of $B_s \rightarrow \mu\mu$ gives:

$$\epsilon_{Trg}^{B_s^0 \to \mu^+ \mu^-} = (89.9 \pm 0.8_{\text{stat}} \pm 4.0_{\text{syst}})\%$$

The $B \rightarrow J/\psi X/B_s \rightarrow \mu \mu$ ratio of efficiencies is then

 $\frac{\epsilon_{\text{cal}}}{\epsilon_{\text{sig}}} = (95.6 \pm 1.3_{stat} \pm 4.8_{\text{syst}})\%$

syst by comparing, on MC, true efficiency with method

 $B^0 \rightarrow K^+\pi^-$ decay mode known with 3.1%, but after stripping we're left with an inclusive sample of B_(s) \rightarrow hh sample (no PID cuts) :

→need to know the fraction of $f_{B0\to K+\pi}$ -

-fit the number of each exclusive mode after

tight PID cuts

-RICH efficiency factors cancel out when

applying constraints on

 $BR(B_d \rightarrow K\pi)/BR(B_d \rightarrow \pi\pi)$

- $f_{B0\to K+\pi}$ - is obtained from a combination of the observed yields, when PID cuts are tight enough to ^{0.40} guarantee negligible contamination

 $f_{B0\to K+\pi}=0.605 \pm 0027$ 50

How the Geometry likelihood is built:

1. Input variables: min Impact Parameter Significance (μ^+,μ^-) , DOCA, Impact Parameter of B, lifetime, iso - μ^+ , iso- μ^-

• **Isolation:** Idea: muons making fake $Bs \rightarrow \mu\mu$ might came from another $SV's \rightarrow For$ each muon; remove the other μ and look at the rest of the event: How many good - SV's (forward, DOCA, pointing) can it make? The precise criteria used is inherited from Hlt Generic

How the Geometry likelihood is built:

- 1. Input variables: min Impact Parameter Significance (μ^+,μ^-) , DOCA, Impact Parameter of B, lifetime, iso μ^+ , iso- μ^-
- 2. They are transformed to Gaussian through cumulative and inverse error function
- 3. In such space correlations are more linear-like \rightarrow rotation matrix, and repeat 2

How the Geometry likelihood is built:

- 1. Input variables: min Impact Parameter Significance (μ^+,μ^-) , DOCA, Impact Parameter of B, lifetime, iso μ^+ , iso- μ^-
- 2. They are transformed to Gaussian through cumulative and inverse error function
- 3. In such space correlations are more linear-like \rightarrow rotation matrix, and repeat 2
- 4. Transformations under signal hyp. $\rightarrow \chi^2_{S'}$, under bkg. $\rightarrow \chi^2_{B'}$.
- 5. Discriminating variable is $\chi^2_{S} \chi^2_{B}$, made flat for better visualization.

lifetime

Figure 23: Performance of GL_K and set of other multivariate methods. The X axis shows the efficiency, and the Y axis the rejection. Blue squares: GL_K , Open stars: BDT. Short Dashed: PDERS. Violet triangles: Fisher Discriminant. Red cycles: Best performing NN. Green dashed line: Support Vector Machine.Red solid line: RuleFit. Orange stars: FDA. Black filled histogram: kNN.

Wilson coefficients

An example of similar approach: Fermi's theory of neutron decay

BR($B_s \rightarrow \mu\mu$) expressed in eff. th. as:

C_{P,S,10} (pseudoscalar, scalar and axial) **depend on the underlying model (SM, SUSY...)**

$$BR(B_{q} \rightarrow \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}} |V_{lb}^{*}V_{lq}|^{2} \tau_{Bq}M_{Bq}^{3}f_{Bq}^{2}\sqrt{1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}} \times \left\{M_{Bq}^{2}\left(1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}\right)C_{s}^{2}\left[M_{Bq}C_{P} + \frac{2m_{\mu}}{M_{Bq}}C_{10}\right]^{2}\right\}$$

Computing CLs

Reference: Thomas Junk, CERN-EP/99-041. 01 March 1999 (Used at LEP for Higgs searches)

For each bin:si = expected signal events in bin
bi = expected bkg. events in bin
di = measured events in bin
di = measured events in bin $X_i = \frac{Poisson(d_i, < d_i >= s_i + b_i)}{Poisson(d_i, < d_i >= b_i)}$ For a configuration {Xi}: $X = \prod_i^N X_i$ (it is a binned likelihood ratio)

$$CL_{s+b} = P_{s+b} (X \le X^{OBSERVED})$$

$$CL_b = P_b(X \le X^{OBSERVED})$$

CLs = CLs + b/CLb

•High CLb \rightarrow observed excess w.r.t bkg expectation \rightarrow signal (CLb>0.9973 \rightarrow 3 sigma)

•Small CLs \rightarrow too few events w.r.t prediction from signal hypothesis

$$BR(B_{q} \to \mu^{+}\mu^{-}) = \frac{G_{F}^{2}\alpha^{2}}{64\pi^{3}\sin^{4}\theta_{W}} |V_{tb}^{*}V_{tq}|^{2} \tau_{Bq}M_{Bq}^{3}f_{Bq}^{2}\sqrt{1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}} \times \left\{ M_{Bq}^{2} \left(1 - \frac{4m_{\mu}^{2}}{M_{Bq}^{2}}\right) \left(\frac{C_{s} - \mu_{q}C_{s}}{1 + \mu_{q}}\right)^{2} + \left[M_{Bq} \left(\frac{C_{P} - \mu_{q}C_{P}}{1 + \mu_{q}}\right) + \frac{2m_{\mu}}{M_{Bq}} \left(\Gamma_{A} - C_{A}^{'}\right)^{2}\right]^{2} \right\}$$

