A Fourth Chiral Generation and SUSY Breaking

Akın Wingerter

Laboratoire de Physique Subatomique et de Cosmologie, Grenoble

March 15, 2011

Talk based on JHEP 03 (2010) 023 (arXiv:0911.1882) In Collaboration with Rohini M. Godbole and Sudhir K. Vempati

イロン 不同と 不同と 不同と

A Fourth Generation of Fermions?

- Interest in a 4th generation of fermions has waxed and waned
- No reason why there should not be a 4th generation
- Particle Data Group Collaboration, C. Amsler et al., Phys. Lett. B667 (2008) 1.
 "An extra generation of ordinary fermions is excluded at the 6σ level on the basis of the S parameter alone."

(Taken a bit out of context!)

- ► Invisible decay width of Z boson → 3 light neutrinos → 3 generations of quarks and leptons
- Sharp drop in papers written on 4 generations

・ロン ・回と ・ヨン ・ヨン

Single Top Production

Renewed interest after observation of single top

DØ Collaboration, V. M. Abazov *et al.*, "Observation of Single Top-Quark Production," *Phys. Rev. Lett.* **103** (2009) 092001, arXiv:0903.0850.

$$\sigma(par{p}
ightarrow tb + X, tqb + X) = 3.94 \pm 0.88$$
 pb

CDF Collaboration, T. Aaltonen *et al.*, "First Observation of Electroweak Single Top Quark Production," *Phys. Rev. Lett.* **103** (2009) 092002, arXiv:0903.0885.

$$\sigma(par{p}
ightarrow tb + X, tqb + X) = 2.3^{+0.6}_{-0.5} ext{ pb}$$

イロト イヨト イヨト イヨト

Single Top Production

Renewed interest after observation of single top

DØ Collaboration, V. M. Abazov *et al.*, "Observation of Single Top-Quark Production," *Phys. Rev. Lett.* **103** (2009) 092001, arXiv:0903.0850.

 $|V_{tb} f_1^L| = 1.07 \pm 0.12 \text{ (stat+syst)}$ assuming upper bound of 1 $|V_{tb}| > 0.78 \quad @95\% \text{ C.L.}$ with no assumptions

CDF Collaboration, T. Aaltonen *et al.*, "First Observation of Electroweak Single Top Quark Production," *Phys. Rev. Lett.* **103** (2009) 092002, arXiv:0903.0885.

$$|V_{tb}| = 0.91 \pm 0.11 \text{ (stat+syst)} \pm 0.07 \text{ (theory)}$$

Previous Measurements

Previous measurements use unitarity relation and are not sensitive to new heavy quarks

DØ Collaboration, V. M. Abazov *et al.*, "Measurement of $B(t \rightarrow Wb) / B(t \rightarrow Wq)$ at $\sqrt{s} = 1.96$ -TeV," *Phys. Lett.* **B639** (2006) 616–622,hep-ex/0603002.

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} = 1.03^{+0.19}_{-0.17}$$

Only sizable coupling of 4th generation is to 3rd generation:

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \stackrel{\leftarrow}{\leftarrow} \sum_{v} V_{cq}^2 \simeq 1 \\ \leftarrow \sum_{v} V_{tq}^2 \gtrsim 0.78$$

・ロン ・回と ・ヨン ・ヨン

Is There a 4th Generation Allowed After All?

- Direct measurement of V_{tb} allows for sizable coupling between 3rd and 4th generation
- N_G = 3 from Invisible decay width of Z?
 Does not apply if neutrinos are heavier than M_Z/2
- The fourth neutrino so much heavier than the first three? Flavor sector of neutrinos not understood; take it as a hint!
- ▶ Bound from cosmology $\sum m_{\nu_i} \lesssim 2 \text{ eV}$ also assumes light neutrinos

・ロン ・回 と ・ ヨ と ・ ヨ と

Is There a 4th Generation Allowed After All?

S and T parameter constraints can be evaded, but (!) only at the cost of some fine-tuning

G. D. Kribs, T. Plehn, M. Spannowsky, and T. M. P. Tait, "Four generations and Higgs physics," Phys. Rev. D76 (2007) 075016, arXiv:0706.3718.

Constraints from S and T; latter constrains the mass difference; fourth generation allows for larger Higgs masses \odot

Particle Data Group Collaboration, C. Amsler et al., Phys. Lett. B667 (2008) 1.

$$\Delta S = \frac{N_c}{6\pi} \left(1 - Y \log \frac{m_u^2}{m_d^2} \right)$$
$$\Delta T = \frac{1}{8\pi \sin^2 \theta_w \cos^2 \theta_w} \left\{ 3 \left[F_{t'b'} + \dots \right] \right\}$$

イロト イヨト イヨト イヨト

Is There a 4th Generation Allowed After All?

M. Bobrowski, A. Lenz, J. Riedl, and J. Rohrwild, "How much space is left for a new family of fermions?," Phys. Rev. D79 (2009) 113006, arXiv:0902.4883.

Constraints from FCNCs and $b \rightarrow s\gamma$; small mixing of 3rd and 4th family favored, but sizable mixing possible; suggests that electroweak precision observables should be considered

M. S. Chanowitz, "Bounding CKM Mixing with a Fourth Family," Phys. Rev. D79 (2009) 113008, arXiv:0904.3570.

For $m_{t'} = 300 \text{ GeV}$ and $|m_{t'} - m_{b'}| \simeq 45 - 75 \text{ GeV}$, mixing can be as large as $\sin \theta_{34} = 0.35$; global EWP fit; main constraints come from *S*, *T*; large(r) mixing as suggested by Bobrowski et al. excluded

▶ J. Alwall *et al.*, "Is V(tb) = 1?," *Eur. Phys. J.* **C49** (2007) 791–801, hep-ph/0607115. $|V_{tb}| = 1$ need not necessarily hold; $|V_{tb}| > 0.9$; constraints from R_b , $B \rightarrow X_s \gamma$, S, T, U;

Time to Review What We Know from Theory!

Repetition of Families

Why is this pattern for 1 generation replicated 3 times? Horizontal symmetries?

イロト イポト イヨト イヨト

Time to Review What We Know from Theory!

Mass Hierarchies and Yukawa Textures

up-quark mass $\sim 2 \times 10^{-3} \text{ GeV} \leftrightarrow \text{top-quark mass} \sim 172.3 \text{ GeV}$ Yukawa coupling of top ~ 1 , but why are the other quarks so light?

Minimal mixing in quark sector

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 0.97 & 0.22 & 0.00 \\ 0.22 & 0.97 & 0.04 \\ 0.00 & 0.04 & ?? \end{pmatrix}$$

イロト イポト イヨト イヨト

Time to Review What We Know from Theory!

Light neutrinos and texture of Yukawa couplings

Why are neutrinos so light?

$$\Delta m_
u^2 \sim 10^{-2} - 10^{-5}$$
 eV, $\sum m_
u < 2$ eV

Maximal mixing in lepton sector

$$U_{\mathsf{PMNS}} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \simeq \begin{pmatrix} 0.8 & 0.5 & 0.0 \\ -0.4 & 0.6 & 0.7 \\ 0.4 & -0.6 & 0.7 \end{pmatrix}$$

イロン 不同と 不同と 不同と

Why Consider a Fourth Family?

- Why not? No theoretical explanation for number of families
- Flavor sector not understood at all
- Obvious extension of the Standard Model
- Present experimental data does not exclude a 4th family
- May ease the tension between the lower bound of the Higgs mass and the EW precision fit

・ロン ・回 とくほど ・ ほとう

There are yet more reasons . . .

- ► V_{CKM} is now 4-by-4 \sim More CPV \sim EW baryogenesis?
- S. W. Ham, S. K. Oh, D. Son, "Electroweak Phase Transition in the MSSM with Four Generations," Phys. Rev. D71 (2005) 015001, arXiv:hep-ph/0407019.

∃ parameter space, where EW phase transition strongly first order (otherwise baryon asymmetry washed out) Needs SUSY. Good, because we love SUSY! ☺

W. S. Hou, "Source of CP Violation For Baryon Asymmetry of the Universe," arXiv:0803.1234.
 May work w/o SUSY

 R. Fok and G. D. Kribs, "Four Generations, the Electroweak Phase Transition, and Supersymmetry," *Phys. Rev.* D78 (2008) 075023, arXiv:0803.4207 [hep-ph].
 Disagrees with Hou; SUSY indispensable; Ham/Oh/Son are in regime of non-perturbative b' Yukawa

► SUSY breaking difficult; see results later in talk ... ③

There are yet more reasons . . .

May help explain current B-physics data

W. S. Hou, M. Nagashima, G. Raz, A. Soddu, "Four Generation CP Violation in $B \rightarrow \phi K^0, \pi^0 K^0, \eta' K^0$ and Hadronic Uncertainties,", arXiv:hep-ph/0603097.

- ► Time dependent CP violation in B system Discrepancy between b → cc̄s and b → sqq̄
- Direct CP violation in *B* system $B^0 \rightarrow K^+\pi^-$ and $B^+ \rightarrow K^+\pi^0$ should have similar rates, but they do not!
- Extra phases and t' contribution to EW penguin diagram may help
- Non-supersymmetric

イロン 不同と 不同と 不同と

There are yet more reasons . . .

Non-perturbative physics

If the 4th generation Yukawa couplings are dangerously close to the non-perturbative regime, maybe they are simply non-perturbative

S. Bar-Shalom, G. Eilam, A. Soni, "Collider Signals of a Composite Higgs in the Standard Model with Four Generations,", arXiv:1001.0569.

- Higgs as composite particle of 4th generation quarks
- New collider signatures e.g. $H \rightarrow \overline{t}' t^* \rightarrow \overline{t}' b W^+$

Experimental Limits

We will be working with 3 sets of masses:

From Tevatron and LEP @95% C.L.:

Particle Data Group Collaboration, K. Nakamura et al., JPG 37 075021 (2010).

 $m_{t'}\gtrsim 256~{
m GeV},~~m_{b'}\gtrsim 128~{
m GeV},~~m_{ au'}\gtrsim 100.8~{
m GeV},~~m_{
u'_{\pi}}\gtrsim 45~{
m GeV}$

Assumes t', b' decay into W and quark

Taken the most conservative bounds

• T parameter $\sim |m_{t'} - m_{b'}| \simeq 45 - 75$ GeV

$$m_{t'} = 256 \,\, {
m GeV}, \quad m_{b'} = 181 \,\, {
m GeV}, \quad m_{ au'} = 100.8 \,\, {
m GeV}$$

Soft SUSY Breaking Parameters

Assume universal mass parameters at same scale!

- ► m₀
- ► M_{1/2}
- ► a₀
- $\tan \beta$ or equivalently b
- sgn μ

Reduces number of parameters from 105 to 5! ©

イロト イヨト イヨト イヨト

Toy mSUGRA/CMSSM Model with Four Generations

Godbole, Vempati, Wingerter arXiv:0911.1882

- \blacktriangleright Even with the most permissive bounds, we find that the MSSM w/four generations becomes non-perturbative \sim 1000 TeV \odot
- To illustrate the *qualitative* features of mSUGRA4, we will calculate the spectrum
- ▶ Perturbativity studies require only RGE equations. For calculating the spectrum, we had to extend SOFTSUSY (→ Indisoft).

Higgses [GeV]	Gauginos [GeV]		Squar	ks &	Sleptons	[GeV]
h ⁰ 119.5	$\tilde{\chi}_{1}^{0}$ 44.1	ũL	480.4	\tilde{t}_1	499.7	\widetilde{t}_1'	498.8
A ⁰ 486.5	$\tilde{\chi}_{2}^{0}$ 83.4	ũ _R	462.6	t ₂	357.8	$\widetilde{t'_2}$	356.4
H ⁰ 486.2	$\tilde{\chi}_{3}^{0}$ 474.2	\widetilde{d}_L	486.7	$ \widetilde{b}_1 $	432.4	\widetilde{b}'_1	428.7
H [±] 492.8	$\tilde{\chi}_{4}^{0}$ 478.1	\widetilde{d}_R	462.0	\widetilde{b}_2	465.9	\widetilde{b}'_2	466.2
	$\widetilde{\chi}_1^{\pm}$ 83.4	€ _L	187.7	$\widetilde{\tau}_1$	196.4	$\widetilde{\tau}'_1$	196.2
	$\tilde{\chi}_{2}^{\pm}$ 481.4	\widetilde{e}_R	142.0	$\tilde{\tau}_2$	126.5	$\tilde{\tau}'_2$	127.1
	<i>g̃</i> 352.1	$\tilde{\nu}_e$	170.4	$\widetilde{\nu}_{\tau}$	169.6	$\widetilde{\nu}'_{\tau}$	169.6

Toy mSUGRA/CMSSM Model with Four Generations

Higgses [GeV]	Gauginos [GeV]	Squarks & Sleptons [GeV]
h ⁰ 106.7	$\tilde{\chi}_{1}^{0}$ 96.6	\tilde{u}_L 568.2 \tilde{t}_1 587.4
A ⁰ 382.2	$\tilde{\chi}_{2}^{0}$ 178.3	\tilde{u}_R 547.5 \tilde{t}_2 411.0
H ⁰ 382.6	$\tilde{\chi}_{3}^{0}$ 343.0	\tilde{d}_L 573.6 \tilde{b}_1 519.9
H± 390.9	$\tilde{\chi}_{4}^{0}$ 362.8	\tilde{d}_R 546.6 \tilde{b}_2 547.2
	$\tilde{\chi}_{1}^{\pm}$ 178.0	\tilde{e}_L 205.7 $\tilde{\tau}_1$ 209.1
	$\tilde{\chi}_{2}^{\pm}$ 364.5	\tilde{e}_R 146.7 $\tilde{\tau}_2$ 138.9
	<i>̃g</i> 607.0	$\tilde{\nu}_{e}$ 189.8 $\tilde{\nu}_{\tau}$ 189.1

Godbole, Vempati, Wingerter arXiv:0911.1882

・ロン ・回と ・ヨン ・ヨン

Table: mSUGRA3 with $m_0 = 100$ GeV, $m_{1/2} = 250$ GeV, $A_0 = 0$ GeV, $\tan \beta = 10$, $\operatorname{sgn} \mu = +$. $M_{\rm GUT} = 2.40 \times 10^{16}$ GeV.

Higgses [GeV]	Gauginos [GeV]	Squarks & Sleptons [GeV]]		
h ⁰ 119.5	$\tilde{\chi}_{1}^{0}$ 44.1	ũL	480.4	\tilde{t}_1	499.7	\tilde{t}'_1	498.8
A ⁰ 486.5	$\tilde{\chi}_{2}^{0}$ 83.4	ũ _R	462.6	\tilde{t}_2	357.8	\widetilde{t}'_2	356.4
H ⁰ 486.2	$\tilde{\chi}_{3}^{0}$ 474.2	<i>d</i> _L	486.7	\widetilde{b}_1	432.4	\widetilde{b}'_1	428.7
H [±] 492.8	$\tilde{\chi}_{4}^{0}$ 478.1	\tilde{d}_R	462.0	\tilde{b}_2	465.9	\widetilde{b}'_2	466.2
	$\tilde{\chi}_1^{\pm}$ 83.4	€ _L	187.7	$\tilde{\tau}_1$	196.4	$\tilde{\tau}'_1$	196.2
	$\tilde{\chi}_{2}^{\pm}$ 481.4	\widetilde{e}_R	142.0	$\tilde{\tau}_2$	126.5	$\tilde{\tau}'_2$	127.1
	ĝ 352.1	$\tilde{\nu}_e$	170.4	$\tilde{\nu}_{\tau}$	169.6	$\widetilde{\nu}'_{\tau}$	169.6

Table: mSUGRA4 with $m_0 = 100$ GeV, $m_{1/2} = 250$ GeV, $A_0 = 0$ GeV, $\tan \beta = 10$, $\sin \mu = +$, and all 4th generation masses equal to their 3rd generation counterparts (toy model). $M_{GUT} = 8.82 \times 10^{16}$ GeV.

Toy mSUGRA/CMSSM Model with Four Generations

Godbole, Vempati, Wingerter arXiv:0911.1882

・ロン ・回と ・ヨン・

Figure: The running of the various soft masses in the MSSM3 and MSSM4 is shown in the left and right panel, respectively. The unification scale is $M_{GUT} = 2.40 \times 10^{16}$ GeV and $M_{GUT} = 8.82 \times 10^{16}$ GeV in the case of three and four generations, respectively.

Perturbativity of the Yukawa Couplings

Godbole, Vempati, Wingerter arXiv:0911.1882

イロト イヨト イヨト イヨト

Figure: Constraints in the $m_{b'}-m_{t'}$ plane from the perturbativity of $h_{t'}$ for fixed values of $m_{\tau'} = 100.8$ GeV and tan $\beta = 3$.

Perturbativity of the Yukawa Couplings

Godbole, Vempati, Wingerter arXiv:0911.1882

イロト イヨト イヨト イヨト

Figure: Constraints in the $m_{\tau'}-m_{b'}$ plane from the perturbativity of $h_{t'}$, $h_{b'}$, and $h_{\tau'}$ for fixed values of $m_{t'} = 150$ GeV and tan $\beta = 3$.

Perturbativity of the Yukawa Couplings

Godbole, Vempati, Wingerter arXiv:0911.1882

イロト イヨト イヨト イヨト

Figure: For the masses that are (i) experimentally allowed, (ii) that are $\sim 25\%$ below the experimental lower bounds with *T*-parameter constraints.

Minimal Gauge Mediated Supersymmetry Breaking

- \blacktriangleright Theory becomes non-perturbative $\sim 10-1000$ TeV
- 4th chiral generation and perturbative unification mutually exclusive
- mSUGRA/CMSSM does not work
- Need SUSY breaking mechanism with low scale
- Gauge Mediated Supersymmetry Breaking
- Consider minimal model

イロト イポト イヨト イヨト

Minimal Gauge Mediated Supersymmetry Breaking

Spectrum generated with Indisoft

Godbole, Vempati, Wingerter arXiv:0911.1882

・ロン ・回 とくほど ・ ほとう

Higgses [GeV]	Gauginos [GeV]	Squarks & Sleptons [GeV]		
h ⁰ 46.2	${\widetilde{\chi}_{1}^{0}}$ 64.3	\widetilde{u}_L 758.1 \widetilde{t}_1 766.1 \widetilde{t}_1' 722.6		
A ⁰ 507.6	${\widetilde \chi}^0_2$ 127.0	\widetilde{u}_R 735.5 \widetilde{t}_2 639.3 \widetilde{t}_2' 583.8		
H ⁰ 532.2	$\widetilde{\chi}_3^0$ 640.6	$\begin{bmatrix} \tilde{d}_L & 761.1 \end{bmatrix} \begin{bmatrix} \tilde{b}_1 & 725.1 \end{bmatrix} \begin{bmatrix} \tilde{b}_1' & 733.4 \end{bmatrix}$		
H [±] 516.1	$\widetilde{\chi}_4^0$ 655.1	\tilde{d}_R 733.8 \tilde{b}_2 734.3 \tilde{b}_2' 525.5		
	$\widetilde{\chi}_1^\pm$ 126.9	\widetilde{e}_L 208.3 $\widetilde{\tau}_1$ 208.4 $\widetilde{\tau}_1'$ 320.3		
	$\widetilde{\chi}_2^\pm$ 652.0	\widetilde{e}_{R} 88.1 $\widetilde{ au}_{2}$ 87.8 $\widetilde{ au}_{2}'$ 193.4		
	<i>g</i> 438.4 <i>g</i> € 38.4	$\tilde{\nu}_{e}$ 197.2 $\tilde{\nu}_{\tau}$ 197.2 $\tilde{\nu}_{\tau}'$ 202.7		

Table: Minimal GMSB spectrum with 4 generations: $n_5 = 1$, $M_{\rm mess} = 100$ TeV, $\Lambda = 50$ TeV, $\tan \beta = 1.75$, $\operatorname{sgn} \mu = +$. $\tilde{\tau}'$ is tachyonic, $m_h = 46.2$ GeV, $m_{\widetilde{G}} = 1.2 \times 10^{-9}$ GeV (gravitino), NLSP is neutralino.

Minimal Gauge Mediated Supersymmetry Breaking

Godbole, Vempati, Wingerter arXiv:0911.1882

イロト イヨト イヨト イヨト

Figure: Regions in mGMSB parameter space Λ - M_{mess} . The lower-diagonal part is ruled out as $\Lambda > M_{mess}$. In the upper-diagonal part, from left to right, the first region (red) tachyonic τ' , and the second (orange), third (cyan), fourth (green) do not have consistent radiative electroweak symmetry breaking as indicated by the tachyonic Higgses.

Conclusions

- ▶ 4th generation not favored by experiment, but not excluded
- Obvious extension of the Standard Model
- May addresses some questions like
 - Higgs bound \leftrightarrow electroweak precision data
 - Electroweak baryogenesis
 - B-physics data
- Needs fine-tuned masses to avoid S and T parameter constraints
- Difficult to accommodate in the context of SUSY (breaking)

・ロン ・回と ・ヨン ・ヨン