Recent results from SciBooNE and MiniBooNE experiments

Žarko Pavlović Los Alamos National Laboratory

Rencontres de Moriond 18 March 2011

Fermilab's Booster Neutrino Beam

- Horn focused beam/8GeV protons from Booster
- Horn polarity -> Neutrino or Anti-neutrino mode

SciBooNE experiment

- Detector:
 - SciBar- Fully active scintillator tracker
 - Electron catcher EM calorimeter
 - Muon Range Detector -Steel+plastic scinitillator
- Main goal to measure neutrino and anti-neutrino cross sections
- Neutrino oscillations with MiniBooNE

CCQE

- CCQE inclusive
 - First measurement on carbon in 1 GeV region
 - Consistent with MINOS, NOMAD and old BNL bubble chamber (deuterium) measurements

Phys. Rev. D83, 012005 (2011)

- CCQE (Preliminary)
 - Consistent with MiniBooNE

NC Coherent π^0

- Clear evidence of coherent production
- Cross section ratio

 $\frac{\sigma(\text{NC} \cosh \pi^0)}{\sigma(\text{CC})} = (1.16 \pm 0.24) \times 10^{-2}$

consistent with Rein-Sehgal model

Phys. Rev. D81, 111102 (2011)

$\bar{\nu}$ CC coherent π

Previously measured cross section ratio in neutrino mode:

$$\frac{\sigma(\nu \text{ CC coh} - \pi)}{\sigma(\nu \text{ CC})} = (0.16 \pm 0.17(\text{stat})(\text{sys})) \times 10^{-2}$$

MiniBooNE experiment

- 800t mineral oil Cerenkov detector
- Main goal to study neutrino oscillations
 - Motivated by unexplained LSND signal (observed 3.8σ excess of nuebar events in numubar beam)
- Measure neutrino cross sections (measured cross sections using ~90% of neutrino events in detector)

NC elastic

- 17% of neutrino interactions
- Flux averaged cross section
- Best match to data with M_A=1.39 $_\pm$ 0.11 GeV (agrees with shape only fits to MiniBooNE CCQE data)
- Sensitive to strange quark component
- Protons above Cerenkov threshold distinguished from neutrons
- Strange quark component contribution to axial form factor: Δs=0.08+-0.26

(in agreement with BNL E734)

Phys. Rev. D82, 092005 (2010)

 $CC \pi^+$

- 19% of neutrino interactions
- Important background to oscillation searches using CCQEs in few GeV range
- World largest sample of CC π⁺ interactions (48322 candidates with 90% purity)
- Also measured flux averaged single and double-differential cross sections of the energy and direction of both final-state

muon and pion

arxiv: 1011.3572 [hep-ex]

 $CC \pi^0$

- 4% of neutrino interactions
- World largest sample at energies below 2 GeV
- Larger cross section than expected
- Also measured flux-averaged differential cross sections in terms of μ⁻ and π⁰ kinematics

arxiv: 1010.3264 [hep-ex]

Neutrinos in Anti-neutrino mode

- In anti-neutrino mode neutrinos (wrong-signs) make ~30% of events
- Important for oscillation and cross section measurements in anti-neutrino mode
- Three independent and complementary measurements of the wrong-sign backgrounc
 - Angular distribution of CCQE events
 - Using CCpi+ sample
 - Using muon decay electrons

arxiv: 1102.1964 [hep-ex]

v_e appearance analysis

- MiniBooNE Neutrino mode:
 - no evidence of appearance in E>475MeV region (where LSND oscillation signal expected)
 - A 3σ excess of events in E<475MeV energy region (shape not consistent with 2v oscillations)

Phys. Rev. Lett. 102, 101802 (2009)

v_e appearance results

	Sterna.
0	

- 5.66E20 POT
- Excess of events in both 200-475MeV and 475-1250MeV region

	200-475MeV	475-1250MeV	
Data	119	120	
MC	100.5 ± 14.3	99.1 ± 14.0	
Excess	18.5 ± 14.3	20.9 ± 14.0	
LSND Best Fit	7.6	22	
Expectation from v Low E excess	11.6	0	
LSND+Low E	19.2	22	Ì

Phys. Rev. Lett. 105, 181801 (2010)

E,,^{QE}>475

• 5.66E20 POT

- E>475 is signal region for LSND type osc.
- Null probability 0.5% (compared to 40% in neutrino mode)
- Oscillations favored over background only hypotheses at 99.4% CL (model dependent)
- Best fit (sin²2q, Dm²) = (0.9584, 0.064 eV²)

Conclusion

- Cross sections:
 - Important measurements from SciBooNE & MiniBooNE
 - Many 1st measurements or first time full kinematics reported
 - Measurements with anti-neutrino beam under way
- Oscillations:
 - MiniBooNE v_e data prefers LSND signal over null hypothesis at 99.4%
 - Future:
 - MiniBooNE oscillation analysis with more POT and analysis improvements
 - Joint SciBooNE/MiniBooNE numu disappearance analysis

Short Baseline Neutrino Workshop at Fermilab May 12-14,2011. (https://indico.fnal.gov/conferenceDisplay.py?confId=4157)

MiniBooNE neutrino result

- 6.5e20 POT
- No excess of events in signal region (E>475 MeV)
- Ruled out 2 n oscillation as LSND explanation (assuming no CP or CPT violation)

MiniBooNE neutrino result

Excess of events observed at low energy:

 $128.8 \pm 20.4 \pm 38.3 (3.0\sigma)$

Shape not consistent with 2 v oscillations

Magnitude consistent with LSND

Anomaly Mediated Neutrino-Photon Interactions at Finite Baryon Density: Jeffrey A. Harvey, Christopher T. Hill, & Richard J. Hill, arXiv:0708.1281

CP-Violation 3+2 Model: Maltoni & Schwetz, arXiv:0705.0107; T. Goldman, G. J. Stephenson Jr., B. H. J. McKellar, Phys. Rev. D75 (2007) 091301.

Extra Dimensions 3+1 Model: Pas, Pakvasa, & Weiler, Phys. Rev. D72 (2005) 095017

Lorentz Violation: Katori, Kostelecky, & Tayloe, Phys. Rev. D74 (2006) 105009

CPT Violation 3+1 Model: Barger, Marfatia, & Whisnant, Phys. Lett. B576 (2003) 303

New Gauge Boson with Sterile Neutrinos: Ann E. Nelson & Jonathan Walsh, arXiv:0711.1363

E>200MeV

- Subtract excess produced by neutrinos in n mode (11.6 events)
- E<475MeV:
 - Large background
 - Not relevant for LSND type osc.
 - Big systematics
- Null c²=32.8; p=1.7%
- Best fit $(\sin^2 2_q, Dm^2) = (0.0061, 4.42 \text{ eV}^2)$

LSND $\overline{\nu}_{e}$ Background Estimates

Estimate	$\overline{\nu}_{e}/\overline{\nu}_{\mu}$	√ _e Bkgd	LSND Excess
LSND Paper	0.086%	19.5+-3.9	87.9+-22.4+-6.0
Zhemchugov Poster	0.071%	16.1+-3.2	91.3+-22.4+-5.6
Dydak Seminar	0.116%	26.3+-5.3	81.1+-22.4+-7.0

All $\overline{\nu_e}$ background estimates assume a 20% error. Note that the $\overline{\nu_e}/\overline{\nu_{\mu}}$ ratio determines the background!

LSND Paper: A. Aguilar et al., Phys. Rev. D 64, 112007 (2001); (uses MCNP)

Zhemchugov Poster: FLUKA $\overline{v_e}/\overline{v_u}$ ratio presented at the ICHEP 2010 Conference, Paris

Dydak Seminar: **FLUKA** v_e / v_{μ} ratio presented at FNAL on January 14, 2011

Although the analysis of Zhemchugov, Dydak et al. is not fully understood or endorsed, their $\overline{v_e}/\overline{v_{\mu}}$ ratios agree reasonably well with the published LSND results.

Note that LSND measures the correct rate of ν_{μ} p -> μ^+ n interactions, which confirms the π^- production and background estimates. Note also, that FLUKA & GEANT4 overestimate π^- production at ~800 MeV. Note that N_{gs} events are included in the LSND background estimate.

GEANT4 Overestimates π^- Production

$v_e C \rightarrow e^- N_{gs}$ Events Do Not Simulate $\overline{v}_e p \rightarrow e^+ n$ Events!

For N_{gs} β decay to be considered a 2.2 MeV γ : $\Delta r{<}2m,$ $\Delta t{<}500\mu s,$ 19{ $N_{hits}{<}51$

The number of N_{gs} events with a β that satisfies this initial requirement is approximately: $(600)(1)(1/31.8)(0.05) \sim 1$ event.

The number of N_{gs} events with $R_{\gamma} > 10 \sim 0.1$ events.

This background is included in the LSND background estimate.