

Single W and Z production and asymmetries at the Tevatron

Mika Vesterinen University of Manchester On behalf of the CDF and DØ Collaborations

Rencontres de Moriond EW 2011 14th March 2011

W and Z production at the Tevatron

- Ideal for testing understanding of QCD
 - Parton distribution functions, initial state radiation, non-perturbative form factors.
 - W and Z production is a background to many Higgs and new physics searches.
- Tevatron = W and Z boson factory
 - Will present result with 7.3 fb⁻¹ and 966k
 Z/Y^{*} candidates!
- Complementary to LHC
 - W and Z mainly produced by valence quark annihilation
 - CP symmetric collider is ideal for asymmetry measurements

W charge asymmetry

- At the Tevatron, W and Z bosons mostly produced by valence quark annihiliation.
 - e.g. W^+ mostly via u(proton) and \overline{d} (antiproton).
- Valence u(ū) quarks have harder PDFs than d(d̄) quarks.
 - W⁺ Boosted along proton direction.

$$x_{1,2} = \frac{M}{\sqrt{s}}e^{\pm y}$$

•
$$A(y) = \frac{\frac{d\sigma(W^+)}{dy} - \frac{d\sigma(W^-)}{dy}}{\frac{d\sigma(W^+)}{dy} + \frac{d\sigma(W^-)}{dy}} \approx \frac{u(x)}{d(x)}$$

W charge asymmetry

- At the Tevatron, W and Z bosons mostly produced by valence quark annihiliation.
 - e.g. W^+ mostly via u(proton) and \overline{d} (antiproton).
- Valence u(ū) quarks have harder PDFs than d(d̄) quarks.
 - W⁺ Boosted along proton direction.

•
$$A(\eta) = \frac{\frac{d\sigma(W^+)}{d\eta} - \frac{d\sigma(W^-)}{d\eta}}{\frac{d\sigma(W^+)}{d\eta} + \frac{d\sigma(W^-)}{d\eta}} \approx A(y) \otimes (V - A)$$

• lepton charge asymmetry folds in the V-A decay asymmetry.

W charge asymmetry (CDF)

- W rapidity estimated statistically using kinematic constraints and assumptions on the angular distribution in the $W \rightarrow ev$ decay.
- Data are well described by pQCD predictions.

lepton charge asymmetry (DØ)

- Directly observable but less sensitive to production asymmetry.
 - Improved by binning in lepton p_T
- Disagreement with QCD predictions at large lepton p_T.

lepton charge asymmetry (DØ/CDF)

- Directly observable but less sensitive to production asymmetry.
 - Improved by binning in lepton p_T
- Disagreement with QCD predictions at large lepton p_T.
 - Confirmed by CDF

$Z/\Upsilon^* \rightarrow ee d\sigma/dy (CDF)$

- Helps to constrain valence quark PDFs
- Good agreement between dσ/dy data and pQCD over wide range of rapidities.

$$x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y} \quad y = \frac{1}{2} \ln \frac{x_p}{x_{\bar{p}}}$$

σ = 256.6 ± 0.7 (stat) ±2.0 (syst) ± 15.4 (lumi)

• Most precise measurement of inclusive cross section

$Z/\Upsilon^* \rightarrow \mu \mu p_T (DØ)$

- Comparison with various pQCD calculations and MC event generator predictions.
 - Verification is important for Higgs and new physics searches.

Z/ Υ^* →ee/μμ d σ /d φ^* (DØ)

- Alternative variable to study the $Z/\Upsilon^* p_T$
 - Less sensitive to detector resolution and selection efficiency.
- Binning in rapidity probes x-dependence of nonperturbative form factors

arXiv:1009.1580 [hep-ex], arXiv:1010.0262, accepted by PRL (2011).

Z/ Υ^* →ee/µµ d σ /d φ^* (DØ)

- Alternative variable to study the $Z/\Upsilon^* p_T$
 - Less sensitive to detector resolution and selection efficiency.
- Binning in rapidity probes x-dependence of nonperturbative form factors

arXiv:1009.1580 [hep-ex], arXiv:1010.0262, accepted by PRL (2011).

Z/Υ^*A_{FB}

- Coupling of Z/Y^* to fermions contains both vector and axial-vector components.
- Leads to asymmetry in the polar angle θ^* of the negatively charged lepton in the dilepton rest frame (or Collins Soper frame).
 - A_{FB} dominated by Z/Y^* interference above and below the Z pole.
 - Sensitive to additional heavy gauge bosons.

$Z/\Upsilon^* \rightarrow ee A_{FB} (CDF)$

- Unfolded AFB agrees well with PYTHIA prediction
 - No evidence for new physics at high mass

Forward-Backward Asymmetry, A_{FB}

$Z/\Upsilon^* \rightarrow ee angles (CDF)$

- Extension of A_{FB} to look differentially in ϕ
- Angular distributions depend on An parameters.
 - Depend on dilepton kinematics

 $d\sigma/d\cos\theta d\varphi = (1+\cos^2\theta)$ $+ \frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin^2\theta\cos\varphi$ $+ \frac{1}{2}A_2\sin^2\theta\cos^2\varphi + A_3\sin\theta\cos\varphi$ $+ A_4\cos\theta + A_5\sin^2\theta\sin^2\varphi$ $+ A_6\sin^2\theta\sin\varphi + A_7\sin\theta\sin\varphi.$

The University of Manchester

$Z/\Upsilon^* \rightarrow ee angles (CDF)$

 $d\sigma/d\cos\theta d\phi = (1 + \cos^2\theta)$

+ $\frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin^2\theta\cos\phi$

+ $\frac{1}{2}A_2\sin^2\theta\cos^2\phi + A_3\sin\theta\cos\phi$

+ $A_4 \cos\theta$ + $A_5 \sin^2 \theta \sin^2 \phi$

+ $A_6 \sin 2\theta \sin \phi$ + $A_7 \sin \theta \sin \phi$.

- Extension of A_{FB} to look differentially in ϕ
- Angular distributions depend on An parameters.
 - Depend on dilepton kinematics
 - A₄ related to $\sin^2\theta_w$.

$Z/\Upsilon^* \rightarrow ee A_{FB} (DØ)$

- Unfolded A_{FB} agrees well with PYTHIA/ZGRAD2.
 - No evidence for new physics at high mass
- sin²θ_w measurement at hadron collider which doesn't look out of place on world average plot!
 - Final Tevatron precision approaching single LEP experiment

	Source		Asin ² A
	3	burce	
	Sta	atistical	0.00080
	Syst	tematics	0.00061
		PDF	0.00048
	EM scale/resolution		0.00029
	MC statistics		0.00020
k	EM e	efficiency	0.00008
	Charge mis-id		0.00004
	Higher orders		0.00008
!	Total		0.00102
		< Average	0.23153 ± 0.00016
	0.23		3099 ± 0.00053
			3159 ± 0.00041
	H	0.2	$\textbf{3098} \pm \textbf{0.00026}$

$Z/\Upsilon^* \rightarrow ee A_{FB} (D\emptyset)$

₹_{0.6}↓

0.4

0.2

0

-0.2

-0.4

uū→ e⁺e⁻

dd→ e⁺e⁻

pp→ e⁺e⁻

Mee (GeV)

- Measure the Z-u and Z-d couplings.
- Good agreement with SM.
 - Most precise measurement of these parameters.

Conclusions

- Rich programme of W and Z measurements from Tevatron.
- Complementarity with LHC.
- Huge event samples.
- Many of these analyses will be updated with the final Tevatron dataset, and improvements in techniques.

Backup slides

W charge asymmetry puzzle

- CDFW charge asymmetry agrees with pQCD
- DØ lepton charge asymmetry disagrees with pQCD
- CDF lepton charge asymmetry agrees with DØ
- Recent study by CTEQ collaboration
 - Soft gluon resummation and higher order (NLO → NNLO) effects are important.
 - PDFs can be made to fit the W and lepton charge asymmetries, but tension with NMC and BCDMS NC DIS data on proton/D targets.

M. Guzzi et al., CT10 parton distribution functions and other developments in the global QCD analysis, arXiv: 1101.0561v1[hep-ph] (2010).

J. C. Collins and D. E. Soper, Phys. Rev. **D** 16, 2219 (1977).

Z- light quark couplings

HI Collaboration, Combined Electroweak and QCD Fit of Inclusive Neutral and Charged Current Data with Polarized Lepton Beams at HERA, **HIprelim-10-042** (2010).

Tevatron luminosity

- More than 9 fb⁻¹.
- I 2 fb⁻¹ expected by September 2011

MANCHESTER 1824

$sin^2\theta_w$ comparison

- Already better precision than LEP
- Expect ~25 MeV uncertainty per Tevatron experiment in next round.

DØ Z pT (ee vs $\mu\mu$)

CDF $\sigma(Z/\Upsilon^*)$

Model	Total cross section
CTEQ5L(LO)	183.3
MRST2001E(NLO)	$241.0^{+2.8}_{-3.4}$
MRST2004(NLO)	241.2
MSTW2008E(NLO)	$242.6^{+4.6}_{-5.5}$
CTEQ6.1M(NLO)	$236.1^{+9.3}_{-9.2}$
CTEQ6.6M(NLO)	$238.7^{+7.1}_{-7.0}$
MRST2006E(NNLO)	$251.6^{+2.8}_{-3.1}$
MSTW2008E(NNLO)	$248.7^{+5.1}_{-4.0}$
Data	$256.6 \pm 0.7 \pm 2.0 \pm 15.4$