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Within the scheme of Minimal Flavour Violation, the possibility of spontaneous flavour sym-
metry breaking is explored by analyzing the scalar potential compatible with the symmetries.
In this setup the Yukawa couplings arise from the vacuum expectation value (vev) of fields
that transform under the flavour group. The outcome of the analysis of the potential depends
much, especially for the mixing angles, on the field content.

1 Minimal Flavour Violation

The hypothesis of Minimal Flavour Violation 1 (MFV) accounts for the suppression of flavour
changing neutral currents as well as for CP violating processes in any theory beyond the Standard
Model. The reason for the flavour alignment of all processes is, in this hypothesis, assumed to
stem in an underlying symmetry. In the limit of vanishing Yukawa couplings the quark sector
of the Standard Model presents and extended symmetry group that is, aside from U(1) factors:

GF ≡ SU(3)QL
× SU(3)UR

× SU(3)DR
. (1)

Under this group the left-handed quark doublet QL would transform as (3, 1, 1), the right-handed
up-type quarks UR as (1, 3, 1) and the right-handed down type quarks DR as (1, 1, 3). This
symmetry is assumed to be an exact symmetry at some high scale (Λfl ≫ v). The introduction of
the Yukawa couplings must then be accompanied by the assignment of transformation properties
under GF , such that the Yukawa interaction is made invariant,

LY = QLYDDRH +QLYUURH̃ + h.c. , YU ∼ (3, 3, 1) , YD ∼ (3, 1, 3) . (2)

Besides the flavour symmetry proposed, the other assumption of MFV is that these are the
only flavour carrying structures. With this hypothesis, any operator arising from new physics
in an effective Lagrangian formalism with the Standard Model fields has it’s flavour structure
determined by the imposition of invariance under GF , which is achieved by the proper insertion
of Yukawa couplings.

2 The dynamical origin of MFV

Through all this reasoning there is the implicit assumption of a dynamical origin of these Yukawa
couplings. The first consequence of exploring this assumption seriously is regarding the Yukawa
interaction as an effective one 4 involving flavons, that is, the fields whose vevs will fix the



Yukawa couplings. The immediate extension is a dimension 5 Yukawa operator :

LY = QL

Σd

Λfl

DRH +QL

Σu

Λfl

URH̃ + h.c. , Σu ∼ (3, 3, 1) , Σd ∼ (3, 1, 3) . (3)

The transformation properties are fixed by the imposition of invariance under GF , and therefore
the Σ scalar fields transform as bi-fundamental representations. From an effective Lagrangian
point of view the next possibility is a dimension 6 Yukawa operator,

LYD
= QL

χL
dχ

R†
d

Λ2
fl

DRH + h.c. , χL
d ∼ (3, 1, 1) , χR

d ∼ (1, 1, 3) ,

LYU
= QL

χL
uχ

R†
u

Λ2
fl

URH̃ + h.c. , χL
u ∼ (3, 1, 1) , χR

u ∼ (1, 3, 1) .

(4)

The scalar fields χ transform as fundamental representations. The dimension 7 operator could
contain a fermion condensate as Georgi and Chivukula suggested 2 but here only the two first
cases will be discussed.

The scalar fields must acquire a vev through a scalar potential, and such potential must be
invariant under GF transformations. The discussion is now turned to whether a general scalar
potential invariant under GF will naturally fix the actual masses and mixing angles.

2.1 Dimension 5 Yukawa Operator

The construction of an invariant scalar potential for the fields Σ requires first the identification
of the invariant magnitudes that can be constructed with the fields. Such a list was first made
by Feldmann et al. 3, here we use a different notation:

Au = tr
(

ΣuΣ
†
u

)

, Bu = det (Σu) ,

Ad = tr
(

ΣdΣ
†
d

)

, Bd = det (Σd) ,

Auu = tr
(

ΣuΣ
†
uΣuΣ

†
u

)

, Add = tr
(

ΣdΣ
†
dΣdΣ

†
d

)

,

Aud = tr
(

ΣuΣ
†
uΣdΣ

†
d

)

.

(5)

The potential then has the form, for the three family case and to the renormalizable level,

V (4) (Σ) =
∑

i=u,d

(

−µ2
iAi + µ̃iBi + λiA

2
i + λ′

iAii

)

+ gudAuAd + λudAud . (6)

As the vevs of the Σ fields are related to quark masses and mixing through Eq. 3 ,

〈Σu〉

Λfl

= YU = V †
CKM ·Diag (yu, yc, yt) ,

〈Σd〉

Λfl

= YD = Diag (yd, ys, yb) , (7)

substitution of these relations in Eq. 5 allows for the analysis of the potential as a function of
quark masses and mixing parameters.

The study of the potential in Eq. 6 reveals that the complete pattern of masses and mixing
angles cannot arise for any value of the potential parameters; one massive quark per sector
and no mixing is the closest to the actual values achievable at this level. For the two family
case a renormalizable potential can yield the hierarchy yu − yc and yd − ys for a certain set of
fine-tuned parameters but again no non-zero angle is obtained. To obtain nonzero angles one
can go to the non-renormalizable level, as, after all, ours is an effective Lagrangian with cut-off



Λfl. To illustrate how to fix the Cabibbo angle to it’s actual value through a non-renormalizable
potential, let’s examine the angle dependence of the potential at the renormalizable level for two
families:

V
(4)
θc

≡ λudAud = λudΛ
4
fl

(

cos 2θc
(

y2c − y2u
) (

y2s − y2d
)

+
(

y2c + y2u
) (

y2s + y2d
))

/2 , (8)

This term, regarded as a potential for θc, will have it’s minimum at either θc = 0 or θc = π/2,
so some different dependence on θc must be added for nonzero angle. The next relevant term
appearing in the series of increasing dimension invariants depending on θc is A2

ud. With these
two terms one can construct a ’mexican hat’ , V (8) ⊃ λudAud + λududA

2
ud/Λ

4
fl ∼ λudud(Aud −

α)2/Λ4
fl that will fix the Cabibbo angle to the experimental value provided the fine tunned ratio

λud/λudud ∼ 10−10. This type of fine-tuning illustrates the difficulty within this approach for
obtaining the actual masses and mixing parameters.

2.2 Dimension 6 Yukawa Operator

This case requires careful connection of the vev of the fields with the Yukawa couplings,

〈

χL
u

〉

〈

χR†
u

〉

Λ2
fl

= YU ,

〈

χL
d

〉

〈

χR†
d

〉

Λ2
fl

= YD . (9)

The structure on the left of each term is not a general mass matrix but one composed of two
’vectors’. One finds the result of this fact by looking at the eigenvalues and eigenvectors of the
matrix

YUY
†
U =

〈

χR†
u χR

u

〉

Λ4
fl

〈

χL
u

〉

〈

χL†
u

〉

. (10)

The matrix structure is given only by the flavon χL
u , and has an immediate diagonalization; χL

u

is the only eigenvector with non-zero eigenvalue, such eigenvalue being

y2ui
≡

〈

χL†
u χL

u

〉〈

χR†
u χR

u

〉

/Λ4
fl , (11)

where yui
is the only nonzero up-type Yukawa entry in this approach. The mixing then arises

as the misalignment when diagonalizing both YUY
†
U and YDY

†
D. Such misalignment is just the

relative direction between χL
u and χL

d , but as we are talking of two ’vectors’ this magnitude is
described by one relative angle, which means there is one physical angle only in this scheme;

cos θ =

〈

χL†
u χL

d

〉

|χL
u |

∣

∣χL
d

∣

∣

, (12)

where
∣

∣χL
u

∣

∣

2
≡

〈

χL†
u χL

u

〉

. Once made the connection with masses and mixing angles we turn

to constructing the potential. All the magnitudes related to masses and mixing angles have
expressions in terms of the vevs of the only five possible GF invariants:

X2 ≡
(

χL†
u χL

u , χL†
d χL

d , χR†
u χR

u , χR†
d χR

d , χL†
d χL

u

)T

. (13)

The potential to the renormalizable level will be the sum of a linear combination of these
invariants and products of two of these invariants. This can be formally written:

V (4) (χ) = −µ2 ·X2 +
(

X2
)†

λX2 . (14)



In a first approach we neglect any CP violation effect and chose real parameters, µ2 is an array
of 5 real components and λ a symmetric matrix a. The minimum of this potential is then:

〈

X2
〉

=
1

2
λ−1µ2 , (15)

provided that λ is invertible. This approach naturally accommodates the angle as it’s expression
in terms of the potential parameters involves the ratio of linear combinations of the entries of
µ2 given by λ−1, which is naturally of O(1). For definiteness let us take the two family case,
although the discussion this far is independent of the number of generations, and write explicitly:

y2c =
1

4Λ4
fl

(

λ−1µ2
)

uL

(

λ−1µ2
)

uR
, y2s =

1

4Λ4
fl

(

λ−1µ2
)

dL

(

λ−1µ2
)

dR
,

cos θc =

(

λ−1µ2
)

ud
√

(λ−1µ2)dL (λ−1µ2)uL
.

(16)

3 Conclusions

Here the possibility of spontaneous breaking of the flavour symmetry regarded in MFV was con-
sidered. In such framework, the Yukawa couplings are fixed by the vev of flavour-carrying fields.
The analysis of the potential leading to spontaneous flavour symmetry breaking differs for the
field content and therefore the group representation on which the scalar fields are placed. The
choice of a dimension 5 Yukawa operator, that is, the introduction of scalar fields transforming in
bi-fundamental representations, does not allow for mixing among quarks at the renormalizable
and classical level, it can accommodate the actual hierarchy of masses in the two family case
and only a partial hierarchy for the three family case. The introduction of fundamental fields
through a dimension 6 Yukawa operator allows for natural mixing among quarks and imposes
the strong hierarchy of one massive quark only per up and down sector at the classical and
renormalizable level. Although a dimension 6 Yukawa operator is better suited to accommodate
the experimental data, none of the approaches gives the complete picture of masses and mix-
ing angles. Such complete landscape could arise from the simultaneous consideration of both
operators or addition of more scalar fields. Overall, it is remarkable that the requirement of
invariance under the flavour symmetry strongly constrains the scalar potential of MFV, up to
the point that the obtention of quark mass hierarchies and mixing angles is far from trivial.
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aThe indices of λ and µ2 run over the five values {uL,dL,uR,dR,ud}.


