Asymmetric dark matter via Leptogenesis

Enrique Fernández Martínez

Rencontres de Moriond 2011

Work in collaboration with M. Blennow, B. Dasgupta and N. Rius JHEP 1103:014,2011

Baryonic Matter

Baryon mass: $m_B = 938 \text{ MeV}$

Baryonic matter density:

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} = (6.19 \pm 0.15) \cdot 10^{-10}$$

Baryonic energy density:

 $\Omega_{B} = 0.0455$

WMAP + BBN

Baryonic Matter

Dark Matter

Baryon mass: $m_B = 938 \text{ MeV}$

DM mass: $m_{DM} = ?$

Baryonic matter density:

DM density:

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} = (6.19 \pm 0.15) \cdot 10^{-10} \qquad n_{DM} = ?$$

Baryonic energy density:

DM energy density:

 $\Omega_B = 0.0455 \qquad \qquad \Omega_{DM} = 0.227$

WMAP + BBN

Baryonic Matter

Dark Matter

Baryon mass: $m_B = 938 \text{ MeV}$

DM mass: $m_{DM} = ?$

Baryonic matter density:

DM density:

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} = (6.19 \pm 0.15) \cdot 10^{-10} \qquad n_{DM} = ?$$

Baryonic energy density:

DM energy density:

Baryonic Matter

Baryon mass: $m_B = 938 \text{ MeV}$

WIMP Dark Matter

DM mass: $m_{WIMP} = 100-1000 \text{ GeV}$

Baryonic matter density:

$$\eta_B = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} = \frac{n_B}{n_{\gamma}} = (6.19 \pm 0.15) \cdot 10^{-1}$$

DM density: from thermal freezeout of weak int

Baryonic energy density:

DM energy density:

$$\Omega_{B} = 0.0455 \qquad \qquad \Omega_{DM} = 0.227 \\ \frac{\Omega_{DM}}{\Omega_{B}} \approx 5 \text{ WIMP miracle!} \qquad \text{WMAP + BBN}$$

$$\frac{\Omega_{DM}}{\Omega_B} \approx 5 \text{ WIMP miracle!}$$

Is this a hint in favor of WIMPS or in favor of Baryonic and DM being more similar?

$$\frac{\Omega_{DM}}{\Omega_B} \approx 5 \text{ WIMP miracle!}$$

Is this a hint in favor of WIMPS or in favor of Baryonic and DM being more similar?

Lets make DM more similar to baryonic matter:

Asymmetric Dark Matter

Asymmetric DM

If DM is a Dirac fermion it can have an accidental global symmetry, DM number X, just like B and L in the SM

Asymmetric DM

If DM is a Dirac fermion it can have an accidental global symmetry, DM number X, just like B and L in the SM

A DM asymmetry will be stable, like the baryon asymmetry, no need to impose R or KK parity

Asymmetric DM

If DM is a Dirac fermion it can have an accidental global symmetry, DM number X, just like B and L in the SM

A DM asymmetry will be stable, like the baryon asymmetry, no need to impose R or KK parity

If the DM and baryon asymmetries have the same origin, will be similar, as suggested by the $\Omega_{\rm B}$ - $\Omega_{\rm DM}$ coincidence

typically $m_{DM} \sim 5 \text{ GeV}$

Nussinov 1985; Barr, Chivukula and Farhi 1990; Kaplan 1992; Kuzmin 1997; Kusenko 1999; Kitano and Low 2004 and 2005; Hooper, March-Russell and West 2004; Farrar and Zaharijas 2004 and 2005; Agashe and Servant 2004; Cosme, Lopez Honorez and Tytgat 2005; Suematsu 2005; Banks, Echols and Jones 2006; Page 2007; Nardi, Sannino and Strumia 2009...

Decay of Majorana right-handed neutrino N_R produces L asymmetry

Decay of Majorana right-handed neutrino N_R produces L asymmetry

CP and L violation in decay

M. Fukugita and T. Yanagida 1986

SM sphaleron processes partially convert L into B conserving B-L

B and L are anomalous and violated in the SM via sphaleron transitions to different EW vacua but B-L remains conserved

Decay of Majorana right-handed neutrino N_R produces L asymmetry

CP and L violation in decay

M. Fukugita and T. Yanagida 1986

SM sphaleron processes partially convert L into B conserving B-L

Cant couple 5 GeV DM to SM sphalerons we need new sphalerons

We expand all SM generations with N_R and DM fermions x_L and x_R

We expand all SM generations with N_R and DM fermions x_L and x_R

We add two new gauge interactions: $SU(3)_{DC}$ and $SU(2)_{H}$

We expand all SM generations with N_R and DM fermions x_L and x_R

We add two new gauge interactions: SU(3)_{DC} and SU(2)_H

 x_L and x_R are triplets of SU(3)_{DC} so that they form "dark baryons" With masses similar to the SM baryons

We expand all SM generations with N_R and DM fermions x_L and x_R

We add two new gauge interactions: SU(3)_{DC} and SU(2)_H

 x_L and x_R are triplets of SU(3)_{DC} so that they form "dark baryons" With masses similar to the SM baryons

 $SU(2)_{H}$ is a horizontal chiral symmetry that provides new sphalerons $SU(2)_{H}$ doublets:

$$\begin{pmatrix} \mu \\ e \end{pmatrix}_R \qquad \begin{pmatrix} s \\ d \end{pmatrix}_R \qquad \begin{pmatrix} c \\ u \end{pmatrix}_R \qquad \begin{pmatrix} x_2 \\ x_1 \end{pmatrix}_R$$

 N_R and x_L are singlets to prevent anomalies

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

SU(2)_L sphalerons violate B, L and X in the direction: $\Delta B = \Delta L$, $\Delta X = 0$ SU(2)_H sphalerons violate B, L and X in the direction: $\Delta B = 2\Delta L = 2\Delta X$

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

SU(2)_L sphalerons violate B, L and X in the direction: $\Delta B = \Delta L$, $\Delta X = 0$ SU(2)_H sphalerons violate B, L and X in the direction: $\Delta B = 2\Delta L = 2\Delta X$

B - L - X remains non-anomalous and exactly conserved

L asymmetry partially transformed into B and X

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

SU(2)_L sphalerons violate B, L and X in the direction: $\Delta B = \Delta L$, $\Delta X = 0$ SU(2)_H sphalerons violate B, L and X in the direction: $\Delta B = 2\Delta L = 2\Delta X$

B – L – X remains non-anomalous and exactly conserved

L asymmetry partially transformed into B and X After $SU(2)_{H}$ and symmetry $SU(2)_{L}$ breakings asymmetries are frozen

$$X = -\frac{11}{14}B$$
 $m_{DM} = 5.91 \text{ GeV}$

 N_R is a gauge singlet \rightarrow Seesaw model and L generation in its decay

SU(2)_L sphalerons violate B, L and X in the direction: $\Delta B = \Delta L$, $\Delta X = 0$ SU(2)_H sphalerons violate B, L and X in the direction: $\Delta B = 2\Delta L = 2\Delta X$

B – L – X remains non-anomalous and exactly conserved

L asymmetry partially transformed into B and X After $SU(2)_H$ and symmetry $SU(2)_L$ breakings asymmetries are frozen

$$X = -\frac{11}{14}B$$
 $m_{DM} = 5.91 \text{ GeV}$

Symmetric DM component from thermal freeze out form "dark mesons" below the $SU(3)_{DC}$ phase transition which decay into SM particles via the $SU(2)_{H}$ interaction

Constraints and phenomenology

"Dark mesons" should decay before BBN \rightarrow lower bound $G_F^H > 10^{-(10-12)} \text{GeV}^{-2}$

Constraints and phenomenology

"Dark mesons" should decay before BBN \rightarrow lower bound $G_F^H > 10^{-(10-12)} \text{GeV}^{-2}$

Lower bound on $SU(2)_{H}$ for sphalerons to be in thermal equilibrium

$$\alpha^4 = \left(\frac{g_H^2}{4\pi}\right)^4 \ge \frac{10T}{M_{Pl}}$$

Constraints and phenomenology

"Dark mesons" should decay before BBN \rightarrow lower bound $G_F^H > 10^{-(10-12)} \text{GeV}^{-2}$

Lower bound on $SU(2)_{H}$ for sphalerons to be in thermal equilibrium

$$\alpha^4 = \left(\frac{g_H^2}{4\pi}\right)^4 \ge \frac{10T}{M_{Pl}}$$

 $SU(2)_H$ interaction induces FCNC upper bound from $K^0 \rightarrow \mu e$

$$G_F^H < 3.6 \cdot 10^{-12} \,\mathrm{GeV}^{-2}$$

Tension with decay before BBN, need to break the symmetry in stages or to couple mainly to 2^{nd} and 3^{rd} generations

Breaking the symmetry in stages

If $SU(2)_H$ symmetry broken by vev of scalar triplet along σ_3 a flavour-conserving Z' remains massless (like Georgi-Glashow model)

Milder constraints on the mass of the $Z' \rightarrow$ can mediate "dark mesons" decay before BBN

Breaking the symmetry in stages

If $SU(2)_H$ symmetry broken by vev of scalar triplet along σ_3 a flavour-conserving Z' remains massless (like Georgi-Glashow model)

Coupling to 2nd and 3rd generations

If $SU(2)_H$ interaction involves mainly 2^{nd} and 3^{rd} generations constraints are weaker

Can provide new source of mixing and CP violation in the B_s system

Conclusions and Outlook

- Extending the SM with N_R and DM fermions + SU(2)_H×SU(3)_{DC} induces asymmetric DM via leptogenesis
 - DM is stable without additional parities
 - DM mass and abundance similar to baryons
- A flavour-conserving Z' remnant of SU(2)_H can have low mass and lead to signals at colliders or direct detection experiments
- If SU(2)_H couples mainly to the 2nd and 3rd generations it can provide new sources of mixing and CP violation in B system
- Can the SU(2)_H symmetry breaking help with the flavour puzzle?