

Standard Model Measurements at ATLAS

John Alison University of Pennsylvania

On behalf of the ATLAS collaboration

Standard Model Flagship of the ATLAS Physics Program in 2010

Soft QCD

Particle MultiplicitiesUnderlying Event

- Total pp Cross Section

QCD

- Inclusive Jets
- Inclusive γ
- Jet Shapes
- -W/Z + Jets
- Top pair production

Electro-weak

- W/Z cross section
- Ζ→ττ
- W AsymmetryDiboson:
 - $W\gamma$ / $Z\gamma$ / WW
- Single Top

Standard Model as Standard Candles:

Use the Signals we expect to see to ...

- Understand Detector
- Refine Analysis techniques

Important for physics objects used everywhere: Charged Leptons / Missing E_T / Jets / Photons

- Jet production cross-section measurement - Top cross-section in lepton+jets channel - Estimation of SM backgrounds to SUSY - Observation of $Z \rightarrow \tau \tau$ decays.

W Charge Asymmetry

Sensitive to proton valence quark distribution.

- More W⁺than W⁻produced at LHC (2u/1d quark)
- Can be used to constrain PDFs. (Important for $10^{-3} \le x \le 10^{-1}$)

Measured in µ-channel vs µ pseudorapidity:

$$A_{\mu} = \frac{\frac{d\sigma_{W\mu^{+}}}{d\eta_{\mu}} - \frac{d\sigma_{W\mu^{-}}}{d\eta_{\mu}}}{\frac{d\sigma_{W\mu^{+}}}{d\eta_{\mu}} + \frac{d\sigma_{W\mu^{-}}}{d\eta_{\mu}}}$$

Many experimental uncertainties cancel in Asymmetry

Selection

$$P_T^{\mu} > 20 \text{ GeV}, E_T^{miss} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$$

 $1.30 \times 10^5 \text{ Candidates}$

Background Estimation

7% of candidate events: 6% leptonic $(Z \rightarrow \mu \mu(\tau \tau)/W \rightarrow \tau \nu/tt)$ 1% QCD jets (data-driven)

Current Experimental Uncertainties Already Comparable to those of Global Fits.

W Charge Asymmetry

Asymmetry 0.32	Data 2010 (\s=7 TeV) Error bar reports mom. scale Inner Detector Muon Spectrometer	Source	Relative Uncertainty
0.25	$[W \rightarrow \mu \nu]$	Trigger	2-7%
	Independent	μ- rec	1-7%
0.2	- Measurements - Validate	Mom. scale	1-2%
0.15	Systematic Uncertainties $\int L dt = 31 \text{ pb}^{-1}$ $\int L dt = 31 \text{ pb}^{-1}$	Background Systematics li Statistics in Co	1-2% mited by Data ontrol Samples

Current Experimental Uncertainties Already Comparable to those of Global Fits.

Motivation:

- First Wy, Zy cross section measurements at 7 TeV
- Test EWK model, Sensitive to Triple Gauge Couplings
- Will Constrain New Physics in Anomalous TGCs

Signature:

- Performed in Leptonic Decay Channels.
- W candidate $E_T^l > 20~{\rm GeV},~E_T^{miss} > 25~{\rm GeV},~m_T^W > 40~{\rm GeV}$
- Z candidate $E_T^l > 20 \text{ GeV}, m_{l^+l^-} > 40 \text{ GeV}$
- Isolated γ $E_T^{\gamma} > 15~{\rm GeV},~E_T^{Iso(0.4)} < 5~{\rm GeV},~\Delta R(l,\gamma) > 0.7$

Wy and Zy cross sections

W+y+X	Measured cross section (pb)				
e-channel	$73.9 \pm 10.5 \text{ (stat)} \pm 15.9 \text{ (sys)} \pm 8.1 \text{ (lumi)}$				
µ-channel	$58.6 \pm 8.2 \text{ (stat)} \pm 11.7 \text{ (sys)} \pm 6.4 \text{ (lumi)}$				
SM NLO Prediction: 69.0 ± 4.6 (sys)					

Z+y+X	Measured cross section (pb)			
e-channel	$16.4 \pm 4.5 \text{ (stat)} \pm 4.3 \text{ (sys)} \pm 1.8 \text{ (lumi)}$			
µ-channel	$10.6 \pm 2.6 \text{ (stat)} \pm 2.5 \text{ (sys)} \pm 1.2 \text{ (lumi)}$			
SM NLO Prediction: 13.8 ± 0.9 (sys)				

Cross Section Reported for: $E_T^{\gamma} > 10 \text{ GeV} / \Delta R(l, \gamma) > 0.5 / f_{iso}^{\gamma} < 0.5$ Systematics limited by: γ -Rec/ID, Background Estimation, Signal Acceptance.

First Wy, Zy cross section measurements at 7 TeV

$\underset{\bar{q}}{W} \underset{W^{-}}{W} \underset{\bar{q}}{Q} \underset{W^{-}}{Q} \underset{\bar{q}}{Q} \underset{W^{-}}{Q} \underset{W^{-}}{Q} \underset{W^{-}}{R} \underset{W^{-}}{R} \underset{g}{R} \underset{W^{-}}{R} \underset{g}{R} \underset{W^{-}}{R} \underset{g}{R} \underset{W^{-}}{R} \underset{g}{R} \underset{W^{-}}{R} \underset{W^{-}}{R}$

Motivation:

- Test EWK model, Sensitive to Triple Gauge Couplings
- Will Constrain New Physics in Anomalous TGCs
- Dominant Background to $H \rightarrow WW$ search

Signature:

- Performed Fully Leptonic Decays.
- 2 Opposite-Sign Leptons (e,µ)
- Large Missing Energy

WW Cross Section

Backgrounds	Events	Source	Uncertaintv	
Drell Yan (MC)	$0.24 \pm 0.15 \pm 0.17$			
Top (MC)	$0.55 \pm 0.12 \pm 0.30$	Luminosity	11%	
W+ lots (Data)	0.52 - 0.12 - 0.00	Background	9.6%	
W JEIS (Dala)	$0.34 \pm 0.32 \pm 0.21$	Acceptance	7.4%	
Other Diboson (MC)	$0.39 \pm 0.04 \pm 0.06$		1 (10/	
Total Background	$1.72 \pm 0.37 \pm 0.45$	Systematic	16.4%	
Observed Events	8	Statistical	44%	

$$\sigma_{WW} = 40^{+20}_{-16}(stat) \pm 7(syst) \text{ pb.}$$

NLO Prediction: $46 \pm 3 \text{ pb}$
(MCFM with MSTW2008 (including gg))

(Signal Significance 3.0 σ)

Single Top

Motivation:

- Single Top is a direct probe of CKM element $V_{\mbox{\scriptsize tb}}$
- 3 modes w/distinct signatures
- Sensitive to many models of new physics.

Present Searches in the t- and Wt channel

Single Top: Wt2 W Bosons in Final StateSingle Lepton ChannelSimilar to t-channel analysis (extra jet)Allow 2-4 final state jetsDiLeptonWt12.6 ± 0.97.1 ± 0.5

Conclusions

WAsymmetry - Measured in μ -ch. - Uncert. Comparable

w/ current PDF fits.

Constrain PDFs

- Future measurements

10⁵

Dibosons

- First W γ / Z γ x-section measurements at 7 TeV
- Measured WW cross section
- Future measurements constrain New Physics aTGCs

Single Top

- Presented First Searches.
- Limits in t- and Wt- channels
- More Statistics will allow

x-section measurements

References

"Measurement of the Muon Charge Asymmetry from W Bosons Produced in pp Collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector" <u>http://cdsweb.cern.ch/record/1334197</u>

"Measurement of the production cross section of Wgamma and Zgamma at sqrt(s) = 7 TeV with the ATLAS Detector" <u>http://cdsweb.cern.ch/record/1334838</u>

"Measurement of the WW production cross section in protonproton collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector" <u>http://cdsweb.cern.ch/record/1334877</u>

"First Searches for Single Top-Quark Production with the ATLAS Detector in pp Collisions at sqrt(s) = 7TeV" <u>http://cdsweb.cern.ch/record/1329576</u>

Leptons in ATLAS

Muons

EM Cluster matched to track. "Loose" RHad / shower 2nd layer "Medium": shower strips/ track "Tight": track matching / TR 2 Independent measurements Matching reject decays in flight Impact parameter reject cosmics

Isolation required to reduce QCD Background

Lepton Efficiencies measured in data from Ws and Zs

Neutrinos

Electrons

Presence inferred through overall momentum imbalance.

Calculated using noise suppressed clusters in calorimeter + reco. muons

W-Candidates

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} p_{\rm T}^{\nu} (1 - \cos(\phi^{\ell} - \phi^{\nu}))},$$

Muon Charge Asymmetry

	Triggon	Deconstruction	$p_{\rm T}$ Scale and	QCD	Electro-weak and $t\bar{t}$	Theoretical
	Ingger	Reconstruction	Resolution	Normalisation	Normalisation	Modelling
$0.00 < \eta_{\mu} < 0.21$	0.011	0.010	0.003	0.003	< 0.001	0.007
$0.21 < \eta_{\mu} < 0.42$	0.010	0.004	0.003	0.003	< 0.001	0.005
$0.42 < \eta_{\mu} < 0.63$	0.009	0.004	0.003	0.003	< 0.001	0.006
$0.63 < \eta_{\mu} < 0.84$	0.012	0.004	0.003	0.002	0.001	0.007
$0.84 < \eta_{\mu} < 1.05$	0.013	0.006	0.003	0.003	0.001	0.008
$1.05 < \eta_{\mu} < 1.37$	0.006	0.007	0.002	0.002	0.001	0.006
$1.37 < \eta_{\mu} < 1.52$	0.006	0.005	0.002	0.003	0.002	0.005
$1.52 < \eta_{\mu} < 1.74$	0.005	0.004	0.002	0.003	0.002	0.007
$1.74 < \eta_{\mu} < 1.95$	0.006	0.003	0.002	0.002	0.001	0.006
$1.95 < \eta_{\mu} < 2.18$	0.006	0.004	0.002	0.003	0.002	0.009
$2.18 < \eta_{\mu} < 2.40$	0.007	0.005	0.002	0.003	0.002	0.007

Wy: W+jet Bkg

Estimate 80 +/- 0.9 % purity

W/Z + y Yield Systematics

Process	Observed events	non W+jets background	W+jet background	Extracted Signal
$pp \rightarrow e \nu \gamma$	95	$10.1 {\pm} 0.8 {\pm} 1.2$	$16.9 \pm 6.4 \pm 7.3$	$67.9 \pm 9.5 \pm 7.3$
$pp ightarrow \mu u \gamma$	97	$12.4 \pm 0.9 \pm 1.4$	$16.8 \pm 4.7 \pm 7.3$	$67.8 \pm 9.3 \pm 7.4$
Process	Observed events	Total Backg	ground	Extracted Signal
$pp \rightarrow e^+e^-\gamma$	25	3.8 ± 3.8		$21.2 \pm 5.8 \pm 3.8$
$pp ightarrow \mu^+\mu^-\gamma$	23	3.4 ± 3	$19.6 \pm 4.8 \pm 3.4$	

Table 1: Numbers of the total observed candidate events, estimated number of background and estimated number of signal events for the $pp \rightarrow l\nu\gamma$ and $pp \rightarrow l^+l^-\gamma$ selected samples. The first uncertainty is statistical. The second uncertainty represents the systematics. The *W*+jets background contribution is estimated with a data-driven two-dimensional sideband method. Uncertainties on the luminosity determination and on the NLO theoretical cross section predictions are taken into account for the estimate of the non *W*+jets background. The uncertainty on the Monte Carlo based background estimate for the $pp \rightarrow l^+l^-\gamma$ process is 100%.

Wy / Zy Cross Section

lumi

Δ

3.9

3.9

syst.

7.3

 $\begin{array}{c} 0.052 \\ 0.57 {\times} 10^{-2} \end{array}$

3.8

 $\begin{array}{c} 0.042 \\ 0.98 {\times} 10^{-2} \end{array}$

7.4

 $0.063 \\ 0.58 \times 10^{-2}$

3.4

 $\begin{array}{c} 0.059 \\ 0.98 {\times} 10^{-2} \end{array}$

	Fidu	icial Cross Section	on						
	evγ	μνγ	$e^+e^-\gamma$		$\mu^+\mu^-\gamma$	Inn			
Lepton $E_t(p_T)$ cut	$E_T^e > 20$ GeV	$p_T^{\mu} > 20 \text{ GeV}$	$E_T^e > 20$ G	eV	$p_T^{\mu} > 20 \text{ GeV}$		JULS		
	$p_T^{\nu} > 25 \text{ GeV}$	$p_T^{\nu} > 25 \text{ GeV}$				A			
	$ \eta_e $ $<$ 2.47	$ \eta_{\mu} $ $<$ 2.4	$ \eta_e < 2.4$	7	$ \eta_{\mu} $ $<$ 2.4		.1 .	- 4 - 4	
Lepton η cut	excluding		excluding	5			value	stat.	
	$1.37 < \eta_e < 1.52$		$1.37 < \eta_e <$	1.52				$pp \rightarrow e$	νγ
Boson mass cut	$m_T > 40 \text{ GeV}$	$m_T > 40 \text{ GeV}$	$m_{ee} > 40 \text{ G}$	eV n	$n_{\mu\mu} > 40 \text{ GeV}$	$N_{W\gamma}^{sig}$	67.9	9.5	
		$E_T' >$	15 GeV	1.50		$L_{W\gamma}[p\dot{b}^{-1}]$	36.4	-	
Photon cut	$ \eta_{\gamma} $.	< 2.47 (exclud	ling 1.37 < $ \eta_{\gamma} $	< 1.52)		$C_{W\gamma}$	0.363	0.001	
	$\Delta R(l,\gamma) > 0.7$				$A_{W\gamma}$	6.95×10^{-2}	0.1×10^{-2}	0.5	
	То	tal Cross Section	$\frac{11action c_h}{1} < 0$					$pp \rightarrow e^+$	$e^-\gamma$
	10	$\frac{E_T^{\gamma}}{E_T^{\gamma}} >$	10 GeV			$N_{Z\gamma}^{sig}$	21.2	5.8	
Photon cut	$\Delta \dot{R}(l,\gamma) > 0.5$				$L_{Z\gamma}[pb^{-1}]$	36.4	-		
		photon isolation	fraction $\varepsilon_h^p < 0$).5		$C_{Z\gamma}$	0.289	0.01	
						$A_{Z\gamma}$	12.2×10^{-2}	0.2×10^{-2}	0.9
Kesuli	[S							$pp ightarrow \mu$	ινγ
						$N_{W\gamma}^{sig}$	67.8	9.3	
	experime	ental measurem	nent	SM m	odel prediction	$L_{W\gamma}[pb^{-1}]$	35.2	-	
	σ^{fid}	<i>pb</i>](measured)		σ^{fid}	<i>pb</i>](predicted)	$C_{W\gamma}$	0.457	0.001	
$pp \rightarrow e V \gamma$	$5.1 \pm 0.7(stat)$	$\pm 0.9(syst) \pm 0.9(syst)$	0.6(<i>lumi</i>)	4.6	$\pm 0.3(\text{syst})$	$A_{W\gamma}$	7.19×10^{-2}	0.1×10^{-2}	0.5
$pp \rightarrow \mu v \gamma$	$4.2 \pm 0.6(stat)$	$\pm 0.7(syst) \pm 0.1$	0.5(lumi)	4.9	$\pm 0.3(syst)$			$pp ightarrow \mu^+$	$\mu^-\gamma$
$pp \rightarrow e^+ e^- \gamma$	$2.0 \pm 0.6(stat)$	$\pm 0.5(syst) \pm 0.5(syst)$	0.2(lumi)	1.7	$\pm 0.1(syst)$	$N_{Z\gamma}^{sig}$	19.6	4.8	
$pp \rightarrow \mu^+ \mu^- \gamma$	$1.3 \pm 0.3(stat)$	$\pm 0.3(syst) \pm 0.3(syst)$	0.1(lumi)	1.7	$\pm 0.1(syst)$	$L_{Z\gamma}[pb^{-1}]$	35.2	-	
	σ^{total}	[<i>pb</i>](measured))	σ^{total}	<i>pb</i> (predicted)	$C_{W\gamma}$	0.428	0.01	
$pp \rightarrow eV\gamma$	73.9 ± 10.5 (stat	$\pm 14.6(syst) =$	$\pm 8.1(lumi)$	69.0	$0 \pm 4.6(\text{syst})$	$A_{W\gamma}$	12.3×10^{-2}	0.15×10^{-2}	0.9
$pp \rightarrow \mu \nu \gamma$	$58.6 \pm 8.2(stat)$	$\pm 11.3(syst) \pm$	- 6.4(<i>lumi</i>)	69.0	$0 \pm 4.6(\text{syst})$				
$pp \rightarrow e^+ e^- \gamma$	16.4 ± 4.5 (stat	$)\pm4.3(syst)\pm$	1.8(<i>lumi</i>)	13.8	8 ± 0.9 (syst)				

 $13.8 \pm 0.9(syst)$

 $pp
ightarrow \mu^+ \mu^- \gamma$

 $10.6 \pm 2.6(stat) \pm 2.5(syst) \pm 1.2(lumi)$

WW Backgrounds

Final State	$e^+e^-E_{ m T}^{ m miss}$	$\mu^+\mu^- E_{ m T}^{ m miss}$	$e^{\pm}\mu^{\mp}E_{\mathrm{T}}^{\mathrm{miss}}$	combined
Observed Events	1	2	5	8
MC WW Signal	$0.85{\pm}0.02{\pm}0.13$	$1.74{\pm}0.04{\pm}0.24$	$4.81{\pm}0.06{\pm}0.68$	$7.40{\pm}0.07{\pm}1.05$
Backgrounds				
Top (MC)	$0.04{\pm}0.02{\pm}0.03$	$0.15{\pm}0.06{\pm}0.08$	$0.36{\pm}0.10{\pm}0.19$	$0.55 {\pm} 0.12 {\pm} 0.30$
W+jets (data)	$0.08{\pm}0.05{\pm}0.03$	$0.00{\pm}0.29{\pm}0.10$	$0.46{\pm}0.12{\pm}0.17$	$0.54{\pm}0.32{\pm}0.21$
DY (MC/data)	$0.00{\pm}0.10{\pm}0.07$	$0.01{\pm}0.10{\pm}0.07$	$0.23{\pm}0.06{\pm}0.15$	$0.24{\pm}0.15{\pm}0.17$
Other dibosons (MC)	$0.05{\pm}0.01{\pm}0.01$	$0.10{\pm}0.01{\pm}0.01$	$0.24{\pm}0.05{\pm}0.03$	$0.39{\pm}0.04{\pm}0.06$
Total Background	$0.17{\pm}0.11{\pm}0.09$	$0.26{\pm}0.31{\pm}0.15$	$1.29{\pm}0.17{\pm}0.32$	$1.72{\pm}0.37{\pm}0.45$
Signal / Background	5.0	6.7	3.7	4.3

Top $N_{top}^{zero-jet}(estimate) = N_{data}^{N-jet} \times (N_{MC \ top}^{zero-jet}/N_{MC \ top}^{N-jet})$ **Drell Yan**

W+Jets

$$f_{l} \equiv \frac{N_{\text{lepton ID}}}{N_{\text{Jet-Rich ID}}} \quad \text{in di-jets}$$

$$N_{W+\text{jet Bkg}} = f_{l} \times N_{\text{lepton ID} + \text{Jet-Rich ID}}$$

$$S = \frac{N_{Data}(E_T^{miss, \text{ Rel}} > 30 GeV) - N_{MC}(E_T^{miss, \text{ Rel}} > 30 GeV)}{N_{DY}(E_T^{miss, \text{ Rel}} > 30 GeV)}$$

Relative Missing Energy

Cross Section

Channels	$N_{\rm s}({ m SM})$	N _b	Nobs	$\sigma_{\!WW}$ [pb]
$e^+e^-E_{ m T}^{ m miss}$	0.85	0.17	1	45_{-38}^{+74}
$\mu^+\mu^- E_{ m T}^{ m miss}$	1.74	0.26	2	46^{+47}_{-29}
$e^{\pm}\mu^{\mp}E_{\mathrm{T}}^{\mathrm{miss}}$	4.81	1.29	5	36^{+25}_{-19}
Total	7.40	1.72	8	40^{+20}_{-16}

Single Top: lepton + Jets Background

QCD "Matrix Method" Fit MeT for Normalization (shapes from MC)

W+Jets

Normalize to Jet Multiplicity bins in Data. Obtain correction factors for: Wbb+jets / Wcc + jets / Wc + jets

31

Single Top: t-channel

Lepton flavour	and	charge
----------------	-----	--------

	Cut-based			
	Lepton +	Lepton –		
<i>t</i> -channel	10.3 ± 1.8	4.4 ± 0.8		
s-channel	0.1 ± 0.1	0.1 ± 0.1		
Wt	0.1 ± 0.1	0.2 ± 0.1		
$t\bar{t}$ t-channel $t\bar{t}$ W+t prod.	0.7 ± 0.3	0.7 ± 0.4		
W+jetshannel	2.5 ± 1.1	1.0 ± 0.5		
Wc+ yc tSheavy fi	avo 4.5 ± 2.4	3.9 ± 2.1		
Wbb+jets	0.9 ± 0.9	0.2 ± 0.2		
Wcc̄- z jejtets	0.9 ± 0.9	0.4 ± 0.4		
Diboson Data	0.1 ± 0.1	0.1 ± 0.1		
Z+jets	0.3 ± 0.3	0.1 ± 0.1		
QCD	2.2 ± 1.6	2.1 ± 1.5		
TOTAL Exp	22.7 ± 3.8	13.2 ± 2.8		
S/B	0.83	0.50		
DATA	21	11		

MUN 30

W+t t-channel s-channel

Yields

top pairs W + heavy flavor W + jets

шл И 20

> Dibosons Z + jets Multijets

W+t (× 20) Data

14 12

Extra Light flavor jet in the final state.

Same Selection as t-channel with:

- 2-4 Jets (exactly 1 b-tag)
- $\Delta R(J_1, J_2) < 2.5$,

Dibosons

7 + iets

top pairs W + heavy flavor Table 5: Event yields after the *Wt* selections in the tag electron and muon samples. Uncertainties are from finite statistics in simulation samples and include all systematic effects.

		Muon				
	2 jets	3 jets	4 jets	2 jets	3 jets	4 jets
aver f	2.3 ± 0.5	2.7 ± 0.4	1.2 ± 0.2	2.4 ± 0.5	2.8 ± 0.4	1.2 ± 0.2
\tilde{c}_{s}	[∞] 3.7 ± 0.5	1.2 ± 0.2	0.3 ± 0.1	4.4 ± 0.6	1.3 ± 0.2	0.3 ± 0.1
$\frac{6}{E}t_{14}^{16}$ Electron, 4 jets	11.4 ± 4.0	24.6 ± 5.3	23.2 ± 3.1	12.5 ± 4.1	27.5 ± 6.0	25.6 ± 3.8
$\vec{\exists} W_{2^+jets}$	7.5 ± 3.8	2.4 ± 1.5	0.8 ± 0.7	8.6 ± 4.0	2.5 ± 1.6	1.0 ± 0.9
Woc+jets 1	9.7 ± 10.3	4.8 ± 2.6	1.5 ± 0.9	22.8 ± 11.8	6.4 ± 3.5	1.7 ± 1.1
$W c\bar{c}$ +jets	2.1 ± 2.0	0.9 ± 1.0	0.2 ± 0.3	2.7 ± 2.6	1.3 ± 1.4	0.4 ± 0.5
$W_{p}^{b}\bar{b}$ +jets	3.8 ± 3.6	1.2 ± 1.3	0.6 ± 0.8	4.7 ± 4.4	2.1 ± 2.1	0.8 ± 1.0
Diboson	1.0 ± 0.2	0.4 ± 0.1	0.1 ± 0.0	1.2 ± 0.2	0.5 ± 0.1	0.1 ± 0.0
Z φ jets 1 15 2	1.3 ± 1.3	0.5 ± 0.5	0.6 ± 0.6	1.2 ± 1.2	0.6 ± 0.6	0.2 ± 0.2
Multijet $\Delta R(lead$	ding jet, 2ng lead	$\frac{1.5}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ ± 1.3	0.5 ± 0.5	5.7 ± 3.4	5.5 ± 3.3	1.2 ± 1.0
TOTAL Exp 5	6.3 ± 12.9	40.0 ± 6.5	29.0 ± 3.5	66.2 ± 14.6	50.5 ± 8.2	32.6 ± 4.4
∰S\$ ∕∄B ATLAS Prelimi	nary 0.04	0.07	0.04	0.04	0.06	0.04
$\stackrel{@}{}_{0} \stackrel{D}{}_{18} \stackrel{D}{}_{18} \stackrel{T}{}_{18} \stackrel{L= 35 \text{ pb}^{-1} @$	» s=7TeV 49	55	29	74	50	37
ق 16 Muon, 4 jets						
รัก 14 Z						
- 12						
10						
8						
0						
4 2						

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Δ R(leading jet, 2nd leading jet)

Wt: Dilepton

Figure 8: Observed likelihood ratio (red dashed) and profile likelihood ratio (blue solid) curves for (a) the *t*-channel cut-based analysis and (b) the combined *Wt*-channel analysis. The horizontal green lines represent, from the top, the 95%, 90%, and 68% confidence intervals on the extracted cross-section. The likelihood ratio shows the effect of statistical uncertainties while the profile likelihood ratio also includes the effect of all systematic uncertainties.

Other SM Results

Coming Soon!

Top Semi-Leptonic

Yields

Systematics

<i>e</i> +jets channel						
	1-jet	2-jet	3-jet	≥4-jet	3-jet	≥4-jet
	tagged	tagged	tagged	tagged	zero-tag	zero-tag
QCD (DD)	21.9 ± 3.4	16.4 ± 4.0	4.9 ± 2.7	4.8 ± 3.1	52.0 ± 19	23.0 ± 11
W+jets (MC)	14.5 ± 10	9.5 ± 6.6	3.4 ± 2.7	1.5 ± 1.4	55.1 ± 26	15.1 ± 10
W+jets (DD)	-	-	-	1.9 ± 1.1	-	9.3 ± 4.0
Z+jets (MC)	0.1 ± 0.1	0.3 ± 0.1	0.1 ± 0.1	0.2 ± 0.1	4.6 ± 2.2	1.7 ± 1.3
single-t (MC)	1.6 ± 0.3	2.6 ± 0.6	1.3 ± 0.3	0.7 ± 0.2	0.9 ± 0.2	0.4 ± 0.1
Total (non $t\bar{t}$)	38.1 ± 11	28.8 ± 7.7	9.7 ± 3.8	7.2 ± 3.4	112.6 ± 32	40.2 ± 15
$t\bar{t}$ (MC)	0.6 ± 0.2	4.0 ± 1.0	8.8 ± 1.8	14.9 ± 3.5	4.5 ± 0.8	5.4 ± 1.2
Total expected	39 ± 11	33 ± 8	19 ± 4	22 ± 5	117 ± 32	46 ± 15
Observed	30	21	14	17	106	39

μ +jets channel						
	1-jet	2-jet	3-jet	≥4-jet	3-jet	≥4-jet
	tagged	tagged	tagged	tagged	zero-tag	zero-tag
QCD (DD)	6.1 ± 2.9	3.4 ± 1.8	1.5 ± 0.8	0.8 ± 0.5	4.9 ± 2.3	1.7 ± 1.1
W+jets (MC)	17.8 ± 12	10.5 ± 7.4	4.3 ± 3.3	1.7 ± 1.6	63.6 ± 28	17.6 ± 12
W+jets (DD)	-	-	-	3.2 ± 1.7	-	15.7 ± 4.5
Z+jets (MC)	0.3 ± 0.1	0.4 ± 0.2	0.1 ± 0.1	0.1 ± 0.1	3.3 ± 1.6	1.3 ± 0.8
single-t (MC)	1.7 ± 0.4	2.5 ± 0.5	1.5 ± 0.3	0.7 ± 0.2	1.1 ± 0.2	0.3 ± 0.1
Total (non $t\bar{t}$)	25.9 ± 13	16.8 ± 7.6	7.4 ± 3.4	3.3 ± 1.7	72.9 ± 29	20.9 ± 13
$t\bar{t}(MC)$	0.7 ± 0.2	4.1 ± 1.1	9.0 ± 1.8	15.0 ± 3.4	4.6 ± 0.7	5.5 ± 1.2
Total expected	27 ± 13	21 ± 8	16 ± 4	18 ±4	78 ± 29	26 ± 13
Observed	30	30	18	20	80	36

	Relative cross-section uncertainty [%]		
Source	e + jets	μ + jets	
Statistical uncertainty	±43	±29	
Object selection			
Lepton reco, ID, Trigger	±3	± 2	
Jet energy reco	±13	±11	
<i>b</i> -tagging	-10;+15	-10;+14	
Background rates			
QCD norm	±30	± 2	
W+jets norm	±11	±11	
Other bkg norm	±1	±1	
Signal simulation			
ISR/FSR	-6;+13	± 8	
PDF	±2	± 2	
Parton shower & hadronisation	±1	± 3	
NLO generator	± 4	±6	
Sum systematics	-37;+41	-20;+24	
Integrated luminosity	-11;+14	-10;+13	

QCD Background <u>µ-channel</u>

$$N^{\text{loose}} = N_{\text{real}}^{\text{loose}} + N_{\text{fake}}^{\text{loose}},$$
$$N^{\text{std}} = rN_{\text{real}}^{\text{loose}} + fN_{\text{fake}}^{\text{loose}},$$

In pretag + extrapolation to tag

e-channel

Fit to MeT. pretag and tag samples

Top Dilepton Systematics

Backgrounds

Process	ee	$\mu\mu$	еμ
Z+jets (DD)	0.25 ± 0.18	0.67 ± 0.38	-
$Z(\rightarrow \tau \tau)$ +jets (MC)	0.07 ± 0.04	0.14 ± 0.07	0.13 ± 0.06
Non-Z leptons (DD)	0.16 ± 0.18	-0.08 ± 0.07	0.47 ± 0.28
single top (MC)	0.08 ± 0.02	0.07 ± 0.03	0.22 ± 0.04
dibosons (MC)	0.04 ± 0.02	0.07 ± 0.03	0.15 ± 0.05
Total predicted (non $t\bar{t}$)	0.60 ± 0.27	0.88 ± 0.40	0.97 ± 0.30
$t\bar{t}$	1.19 ± 0.19	1.87 ± 0.26	3.85 ± 0.51
Total predicted	1.79 ± 0.38	2.75 ± 0.55	4.82 ± 0.65
Observed	2	3	4

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

	Relative cross-section uncertainty [%]			
Source	ee	$\mu\mu$	eμ	
Statistical uncertainty	-79;+126	-67;+100	-56;+77	
Object selection				
Lepton reco, ID, Trigger	-2;+11	-4;+3	-1;+3	
JES	-7;+13	-14;+9	-3;+5	
Background rates				
Fake leptons	-31;+24	-4;+1	-15;+8	
Z+jets	-12;+4	-19;+5	-2;+1	
MC stat.	-5;+3	-3;+4	± 2	
Theoretical cross-section	± 3	-5;+4	± 3	
Signal simulation				
ISR/FSR	-4;+5	-2;+3	-2;+3	
PDF	-2;+1	-2;+3	-2;+3	
Parton shower	-9;+14	-6;+9	± 3	
NLO Generator	-8;+11	-11;+13	-3;+4	
Luminosity	-11;+16	-11;+16	-12;+14	
All syst.	-25;+44	-25;+30	-14;+25	
Stat. + Syst.	-83;+134	-72;+104	-57;+81	

Semi-Leptonic

Method	e + jets	μ + jets	e/μ +jets combined
Counting σ [pb]	$105 \pm 46 {}^{+45}_{-40}$	$168 \pm 49 {}^{+46}_{-38}$	$142 \pm 34 {}^{+50}_{-31}$

DiLepton

Channel	$\sigma_{t\bar{t}}$ (pb)
ee	193 +243 +84 -152 -48
$\mu\mu$	$185 ^{+184}_{-124} {}^{+56}_{-47}$
еμ	$129 {}^{+100}_{-72} {}^{+32}_{-18}$
Combined	$151 \begin{array}{c} +78 \\ -62 \end{array} \begin{array}{c} +37 \\ -62 \end{array}$

Combination

Combination	Cross-section (pb)	Signal significance (σ)
Single lepton channels	$142 \pm 34 {}^{+50}_{-31}$	4.0
Dilepton channels	$151 \begin{array}{c} +78 \\ -62 \end{array} \begin{array}{c} +37 \\ -24 \end{array}$	2.8
All channels	$145 \pm 31 {}^{+42}_{-27}$	4.8