Flavour physics, supersymmetry and GUTs

Ulrich Nierste

Karlsruhe Institute of Technology

Rencontres de Moriond EW Interactions and Unified Theories

La Thuile, March 2011

May 14, 2010

Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 14, 2010

Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010

The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

May 14, 2010

Fermilab Wine&Cheese seminar, talk by Guennadi Borrisov:

Evidence for an anomalous like-sign dimuon charge asymmetry

May 17, 2010

The New York Times:

Physicists at the Fermi National Accelerator Laboratory are reporting that they have discovered a new clue that could help unravel one of the biggest mysteries of cosmology: why the universe is composed of matter and not its evil-twin opposite, antimatter.

Joe Lykken, a theorist at Fermilab, said, "So I would not say that this announcement is the equivalent of seeing the face of God, but it might turn out to be the toe of God."

Contents

The $|V_{ub}|$ puzzle

Global analysis of $B_s {-} \overline{B}_s$ mixing and $B_d {-} \overline{B}_d$ mixing

Supersymmetry

GUTs

Conclusions

CKM matrix V

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

fixed by measurements of
$$|V_{us}| = 0.2254 \pm 0.0013$$
, $|V_{cb}| = (40.9 \pm 0.7) \cdot 10^{-3}$ and a global fit to $(\overline{\rho}, \overline{\eta})$

CKM matrix V

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

fixed by measurements of $|V_{us}| = 0.2254 \pm 0.0013$, $|V_{cb}| = (40.9 \pm 0.7) \cdot 10^{-3}$ and a global fit to $(\overline{\rho}, \overline{\eta})$

Unitarity triangle:

$$\overline{
ho} + i\overline{\eta} = -rac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}}$$

$$= \left| rac{V_{ub}^* V_{ud}}{V_{cb}^* V_{cd}} \right| e^{i\gamma}$$

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \to \pi \ell \nu$,
- inclusive decay $B \to X \ell \nu$ and
- leptonic decay $B^+ \to \tau^+ \nu_{\tau}$.

Three ways to measure $|V_{ub}|$:

- exclusive decay $B \to \pi \ell \nu$,
- inclusive decay $B \to X \ell \nu$ and
- leptonic decay $B^+ \to \tau^+ \nu_{\tau}$.

Average of several BaBar and Belle measurements:

$$B^{\text{exp}}(B^+ \to \tau^+ \nu_{\tau}) = (1.68 \pm 0.31) \cdot 10^{-4}$$

Standard Model:

$$B(B^+ \to \tau^+ \nu_{\tau}) = 1.13 \cdot 10^{-4} \cdot \left(\frac{|V_{ub}|}{4 \cdot 10^{-3}}\right)^2 \left(\frac{f_B}{200 \text{ MeV}}\right)^2$$

$$|V_{ub, \text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub, incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B o au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$
 $|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$
 $|V_{ub,B\to\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

$$|V_{ub,B\to\tau\nu}| = \left[5.10 \pm 0.47|_{\text{exp}} \pm 0.35|_{\text{f}_{\text{B}}}\right] \cdot 10^{-3}$$

= $\left[5.10 \pm 0.59\right] \cdot 10^{-3}$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$
 $|V_{ub,\text{incl}}| = (4.32 \pm 0.50) \cdot 10^{-3}$
 $|V_{ub,B\to\tau\nu}| = (5.10 \pm 0.59) \cdot 10^{-3}$

Here $f_B = (191 \pm 13)$ MeV is used:

$$|V_{ub,B\to\tau\nu}| = \left[5.10 \pm 0.47|_{\text{exp}} \pm 0.35|_{\text{f}_{\text{B}}}\right] \cdot 10^{-3}$$

= $\left[5.10 \pm 0.59\right] \cdot 10^{-3}$

 \Rightarrow no puzzle with individual $|V_{ub}|$ determinations

Indirect determination:

find
$$|V_{ub}| \propto |V_{cb}|R_u$$

from
$$R_u = \frac{\sin \beta}{\sin \alpha}$$

With
$$\alpha=89^{\circ}^{+4.4^{\circ}}_{-4.2^{\circ}}$$
 and $\beta=21.15^{\circ}\pm0.89^{\circ}$ find

$$|V_{ub}|_{\rm ind} = (3.41 \pm 0.15) \cdot 10^{-3}$$

Essential: β from $A_{CP}^{mix}(B_d \to J/\psi K_S)$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B o au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub,ind}| = (3.41 \pm 0.15) \cdot 10^{-3}$$

$$|V_{ub,\text{excl}}| = (3.51 \pm 0.47) \cdot 10^{-3}$$

$$|V_{ub,incl}| = (4.32 \pm 0.50) \cdot 10^{-3}$$

$$|V_{ub,B \to au
u}| = (5.10 \pm 0.59) \cdot 10^{-3}$$

$$|V_{ub.ind}| = (3.41 \pm 0.15) \cdot 10^{-3}$$

Alleviate the 2.9 σ tension between $|V_{ub,ind}|$ and $|V_{ub,B\to\tau\nu}|$ with new physics in

- $B^+ o au^+
 u_ au$ or
- $A_{\mathrm{CP}}^{\mathrm{mix}}(B_d \to J/\psi K_{\mathcal{S}})$. \leftarrow easier!

$B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2×2 matrices M and Γ .

$B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices M and Γ .

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal t.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal c, u.

$B-\overline{B}$ mixing in the Standard Model

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices M and Γ .

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal t.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal c, u.

3 physical quantities in $B_q - \overline{B}_q$ mixing:

$$\left| M_{12}^q \right|, \quad \left| \Gamma_{12}^q \right|, \quad \phi_q \equiv \arg \left(-\frac{M_{12}^q}{\Gamma_{12}^q} \right)$$

The two eigenstates found by diagonalising $M - i\Gamma/2$ differ in their masses and widths:

mass difference
$$\Delta m_q \simeq 2|M_{12}^q|,$$
 width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

The two eigenstates found by diagonalising $M - i\Gamma/2$ differ in their masses and widths:

mass difference
$$\Delta m_q \simeq 2|M_{12}^q|,$$
 width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

CP asymmetry in flavour-specific decays (semileptonic CP asymmetry):

$$a_{\rm fs}^q = \frac{|\Gamma_{12}^q|}{|M_{12}^q|} \sin \phi_q$$

May 14, 2010: DØ presents

$$a_{\rm fs} = (-9.57 \pm 2.51 \pm 1.46) \cdot 10^{-3}$$

for a mixture of B_d and B_s mesons with

$$a_{\rm fs} = (0.506 \pm 0.043) a_{\rm fs}^{\rm d} + (0.494 \pm 0.043) a_{\rm fs}^{\rm s}$$

The result is 3.2σ away from $a_{\rm fs}^{\rm SM}=(-0.20\pm0.03)\cdot10^{-3}$. A. Lenz, UN, 2006 and 2011

Averaging with an older CDF measurement yields

$$a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3},$$

which is 2.9σ away from $a_{\rm fs}^{\rm SM}$.

Generic new physics

Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model: $\phi_d^{\rm SM} = -4.3^\circ \pm 1.4^\circ, \qquad \phi_s^{\rm SM} = 0.2^\circ.$

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{\mathrm{SM,q}} \cdot \Delta_q, \qquad \Delta_q \equiv |\Delta_q| \mathrm{e}^{i\phi_q^{\Delta}}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$.

Generic new physics

Phases $\phi_q = \arg(-M_{12}^q/\Gamma_{12}^q)$ in the Standard Model: $\phi_d^{\rm SM} = -4.3^\circ \pm 1.4^\circ, \qquad \phi_s^{\rm SM} = 0.2^\circ.$

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{\mathrm{SM,q}} \cdot \Delta_q \,, \qquad \Delta_q \equiv |\Delta_q| \mathrm{e}^{i\phi_q^\Delta}.$$

In the Standard Model $\Delta_q=1$. Use $\phi_s=\phi_s^{\rm SM}+\phi_s^{\Delta}\simeq\phi_s^{\Delta}$. The measurements

$$\Delta m_s = (17.77 \pm 0.10 \pm 0.07) \text{ ps}^{-1}$$
 CDF
 $\Delta m_s = (17.63 \pm 0.11 \pm 0.04) \text{ ps}^{-1}$ LHCb (prelim)

imply

$$|\Delta_{s}| = 1.03 \pm 0.14_{ ext{(th)}} \pm 0.01_{ ext{(exp)}}$$

Confront the DØ/CDF average

$$a_{\rm fs} = (0.506 \pm 0.043) a_{\rm fs}^d + (0.494 \pm 0.043) a_{\rm fs}^s$$

= $(-8.5 \pm 2.8) \cdot 10^{-3}$

with (A. Lenz, UN, 2011)

$$a_{\rm fs}^d = (5.4 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_d}{|\Delta_d|}, \qquad a_{\rm fs}^s = (5.1 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_s}{|\Delta_s|}.$$

Confront the DØ/CDF average

$$a_{\rm fs} = (0.506 \pm 0.043) a_{\rm fs}^d + (0.494 \pm 0.043) a_{\rm fs}^s$$

= $(-8.5 \pm 2.8) \cdot 10^{-3}$

with (A. Lenz, UN, 2011)

$$a_{\rm fs}^d = (5.4 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_d}{|\Delta_d|}, \qquad a_{\rm fs}^s = (5.1 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_s}{|\Delta_s|}.$$

 \Rightarrow Need both $\phi_s < 0$ and $\phi_d < 0$.

Confront the DØ/CDF average

$$a_{\rm fs} = (0.506 \pm 0.043) a_{\rm fs}^d + (0.494 \pm 0.043) a_{\rm fs}^s$$

= $(-8.5 \pm 2.8) \cdot 10^{-3}$

with (A. Lenz, UN, 2011)

$$a_{\rm fs}^d = (5.4 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_d}{|\Delta_d|}, \qquad a_{\rm fs}^s = (5.1 \pm 1.0) \cdot 10^{-3} \cdot \frac{\sin \phi_s}{|\Delta_s|}.$$

 \Rightarrow Need both $\phi_s < 0$ and $\phi_d < 0$.

$$A_{\mathrm{CP}}^{\mathrm{mix}}(B_d \to J/\psi K_{\mathrm{S}}) \propto \sin(2\beta + \phi_d^{\Delta})$$
:
With $\phi_d^{\Delta} < 0$ find $\beta > \beta^{\mathrm{SM}} = 21^{\circ} \Rightarrow |V_{ub}|$ puzzle solvable.

Global analysis of $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing

Based on work with A. Lenz and the CKMfitter Group (J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess) arXiv:1008.1593

Rfit method: No statistical meaning is assigned to systematic errors and theoretical uncertainties.

We have performed a simultaneous fit to the Wolfenstein parameters and to the new physics parameters Δ_s and Δ_d :

$$\Delta_q \equiv \frac{M_{12}^q}{M_{12}^{q,\mathrm{SM}}}, \qquad \Delta_q \equiv |\Delta_q| e^{i\phi_q^{\Delta}}.$$

Three scenarios:

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$

Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Three scenarios:

Scenario I: arbitrary complex parameters Δ_s and Δ_d

Scenario II: new physics is minimally flavour violating (MFV) (meaning that all flavour violation stems from the Yukawa sector) and y_b is small: one real parameter $\Delta = \Delta_s = \Delta_d$

Scenario III: MFV with a large y_b : one complex parameter $\Delta = \Delta_s = \Delta_d$

Examples: Scenario I covers the MSSM with generic flavour structure of the soft terms and small $\tan \beta$. Scenario II covers the MSSM with MFV and small $\tan \beta$.

Scenario III covers certain two-Higgs-doublet models (but not the MFV-MSSM, CMSSM and mSUGRA).

Results in scenario I:

SM point $\Delta_d = 1$ disfavoured by 2.7σ .

Main driver: $B^+ \rightarrow \tau^+ \nu_{\tau}$

Global fit to UT hinting at ϕ_d^{Δ} < 0:

Other authors have seen a tension with the SM in the same direction stemming from ϵ_{K} .

Lunghi, Soni; Buras, Guadagnoli

In our fit the tension with ϵ_K is mild, because the Rfit method is more conservative. We use $\widehat{B}_K = 0.724 \pm 0.004 \pm 0.067$ corresponding to $B_K(2\,\text{GeV}) = 0.527 \pm 0.0031 \pm 0.049$, which is an average dominated by the result of Aubin, Laiho and van De Water, 2009.

SM point $\Delta_s = 1$ disfavoured by 2.7σ .

without 2010 CDF/DØ data on $B_s \rightarrow J/\psi \phi$

p-values:

Calculate χ^2/N_{dof} with and without a hypothesis to find:

Hypothesis	p-value
$\Delta_d = 1$ (2D)	2.7 σ
$\Delta_{\text{S}}=\text{1 (2D)}$	2.7 σ
$\Delta_d = \Delta_s$ (2D)	2.1 σ
$\Delta_d = \Delta_s = 1$ (4D)	3.6 σ

p-values:

Calculate $\chi^2/N_{\rm dof}$ with and without a hypothesis to find:

Hypothesis	p-value
$\Delta_d = 1$ (2D)	2.7 σ
$\Delta_{\text{s}}=\text{1 (2D)}$	2.7 σ
$\Delta_d = \Delta_s$ (2D)	2.1 σ
$\Delta_d = \Delta_s = 1$ (4D)	3.6 σ

Hypothesis	p-value
$\operatorname{Im}(\Delta_d) = 0 \text{ (1D)}$	2.7 σ
$\text{Im}(\Delta_{s})=0 \text{ (1D)}$	3.1 σ
$\operatorname{Im}(\Delta_d) = \operatorname{Im}(\Delta_s) = 0 \text{ (2D)}$	3.8 σ

Fit result at 95%CL:

$$\phi_{\rm S}^{\Delta}=(-52^{+32}_{-25})^{\circ} \qquad \quad ({\rm and} \ \phi_{\rm S}^{\Delta}=(-130^{+28}_{-28})^{\circ} \)$$

Compare with the 2010 CDF/DØ result from $B_s \rightarrow J/\psi \phi$:

CDF:
$$\phi_s^{\Delta} = (-29^{+44}_{-49})^{\circ}$$
 at 95%CL

DØ:
$$\phi_s^{\Delta} = (-44^{+59}_{-51})^{\circ}$$
 at 95%CL

Naive average: $\phi_s^{avg} = (-36 \pm 35)^\circ$ at 95%CL Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{\rm fs} = \left(-4.2^{+2.9}_{-2.7}\right) \cdot 10^{-3}$$
 at 2σ .

Is the result driven by the DØ dimuon asymmetry? One can remove a_{fs} as an input and instead predict it from the global fit:

$$a_{\rm fs} = \left(-4.2^{+2.9}_{-2.7}\right) \cdot 10^{-3}$$
 at 2σ .

This is just 1.5σ away from the DØ/CDF average

$$a_{\rm fs} = (-8.5 \pm 2.8) \cdot 10^{-3}$$
.

The fit in scenario II (real $\Delta_s = \Delta_d$) is not better than the SM fit and gives $\Delta = 0.90^{+0.31}_{-0.10}$ at 2σ .

The fit in scenario II (real $\Delta_s = \Delta_d$) is not better than the SM fit and gives $\Delta = 0.90^{+0.31}_{-0.10}$ at 2σ .

⇒ bad news for CMSSM and mSUGRA

The fit in scenario II (real $\Delta_s = \Delta_d$) is not better than the SM fit and gives $\Delta = 0.90^{+0.31}_{-0.10}$ at 2σ .

⇒ bad news for CMSSM and mSUGRA

Scenario III (complex $\Delta_s = \Delta_d$) fits the data quite well irrespective of whether $B(B^+ \to \tau^+ \nu_\tau)$ is included or not.

Hypothesis	p-value		
$\Delta = 1$	3.3 σ		

Supersymmetry

The MSSM has many new sources of flavour violation, all in the supersymmetry-breaking sector.

No problem to get big effects in $B_s - \overline{B}_s$ mixing, but rather to suppress the big effects elsewhere.

Are there natural ways to motivate sizable new flavour violation in $B_s - \overline{B}_s$ mixing and $B_d - \overline{B}_d$ mixing while simultaneously suppressing flavour violation elsewhere?

Flavour and SUSY GUTs

Linking quarks to neutrinos: Flavour mixing:

quarks: Cabibbo-Kobayashi-Maskawa (CKM) matrix

leptons: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

Consider SU(5) multiplets:

$$\mathbf{\bar{5}_1} = \begin{pmatrix} \mathbf{d}_R^c \\ \mathbf{d}_R^c \\ \mathbf{d}_R^c \\ \mathbf{e}_L \\ -\nu_{\mathbf{e}} \end{pmatrix}, \qquad \mathbf{\bar{5}_2} = \begin{pmatrix} \mathbf{s}_R^c \\ \mathbf{s}_R^c \\ \mathbf{s}_R^c \\ \mu_L \\ -\nu_{\mu} \end{pmatrix}, \qquad \mathbf{\bar{5}_3} = \begin{pmatrix} \mathbf{b}_R^c \\ \mathbf{b}_R^c \\ \mathbf{b}_R^c \\ \mathbf{b}_R^c \\ \tau_L \\ -\nu_{\tau} \end{pmatrix}.$$

If the observed large atmospheric neutrino mixing angle stems from a rotation of $\overline{\bf 5}_2$ and $\overline{\bf 5}_3$, it will induce a large $\tilde{b}_R - \tilde{\bf s}_R$ -mixing (Moroi; Chang,Masiero,Murayama).

 \Rightarrow new b_R - s_R transitions from gluino-squark loops possible.

Key ingredients: Some weak basis with

$$Y_d = V_{CKM}^* \begin{pmatrix} y_d & 0 & 0 \\ 0 & y_s & 0 \\ 0 & 0 & y_b \end{pmatrix} U_{PMNS}$$

and right-handed down squark mass matrix:

$$\mathsf{m}_{\tilde{d}}^2\left(\mathit{M}_{\mathit{Z}}\right) = \mathsf{diag}\left(\mathit{m}_{\tilde{d}}^2,\,\mathit{m}_{\tilde{d}}^2,\,\mathit{m}_{\tilde{d}}^2 - \Delta_{\tilde{d}}\right).$$

with a calculable real parameter $\Delta_{\tilde{g}}$, typically generated by top-Yukawa RG effects.

Rotating Y_d to diagonal form puts the large atmospheric neutrino mixing angle into $m_{\tilde{q}}^2$:

$$U_{\rm PMNS}^{\dagger} \, {\rm m}_{\tilde{d}}^2 \, U_{\rm PMNS} = \begin{pmatrix} m_{\tilde{d}}^2 & 0 & 0 \\ 0 & m_{\tilde{d}}^2 - \frac{1}{2} \, \Delta_{\tilde{d}} & -\frac{1}{2} \, \Delta_{\tilde{d}} \, {\rm e}^{i\xi} \\ 0 & -\frac{1}{2} \, \Delta_{\tilde{d}} \, {\rm e}^{-i\xi} & m_{\tilde{d}}^2 - \frac{1}{2} \, \Delta_{\tilde{d}} \end{pmatrix}$$

The CP phase ξ affects $B_s - \overline{B}_s$ mixing!

Chang-Masiero-Murayama model

The Chang–Masiero–Murayama (CMM) model is based on the symmetry breaking chain

$$SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2)_L \times U(1)_Y$$
.

We have considered $B_s-\overline{B}_s$ mixing, $b\to s\gamma$, $\tau\to \mu\gamma$, vacuum stability bounds, lower bounds on sparticle masses and the mass of the lightest Higgs boson.

The analysis involves 7 parameters in addition to those of the Standard Model.

Generic results: Largest effect in $B_s - \overline{B}_s$ mixing powerful constraint: $M_h > 114 \,\text{GeV}$

J. Girrbach, S. Jäger, M. Knopf, W. Martens, UN, C. Scherrer, S. Wiesenfeldt 1101.6047

Black: negative soft masses 2 Gray blue: excluded by $au o \mu \gamma$ Medium blue: excluded by

 $b \rightarrow s \gamma$

Dark blue: excluded by $B_s - \overline{B}_s$

mixing

Green: allowed

 $M_{\tilde{q}}$: squark mass of first two generations a_1^d : trilinear term of first two generations

Dashed lines with gray labels: ϕ_s in degrees Solid lines with white labels: M_h .

• The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \to J/\psi \phi$ data. The central value is easier to accommodate if both a_{fs}^s and a_{fs}^d receive negative contributions from new physics.

- The DØ result for the dimuon asymmetry in B_s decays supports the hints for $\phi_s < 0$ seen in $B_s \to J/\psi \phi$ data. The central value is easier to accommodate if both a_{fs}^s and a_{fs}^d receive negative contributions from new physics.
- A global fit to the UT indeed shows a slight preference for a new CP phase $\phi_d^\Delta < 0$, driven by ${\cal B}({\cal B}^+ \to \tau^+ \nu_\tau)$ (and possibly ϵ_K). In a simultaneously global fit to the UT and the $B_s \overline{B}_s$ mixing complex a plausible picture of new CP-violating physics emerges.

Large CP-violating contributions to B_s – B
_s mixing are
possible in supersymmetry without violating constraints
from other FCNC processes. If confirmed, the DØ/CDF
results imply physics beyond the CMSSM and mSUGRA.

- Large CP-violating contributions to B_s B
 _s mixing are possible in supersymmetry without violating constraints from other FCNC processes. If confirmed, the DØ/CDF results imply physics beyond the CMSSM and mSUGRA.
- Models of GUT flavour physics with $\tilde{b}_R \tilde{s}_R$ mixing driven by the atmospheric neutrino mixing angle can explain the Tevatron data on $B_s \overline{B}_s$ mixing without conflicting with $b \to s \gamma$ and $\tau \to \mu \gamma$.

A pinch of new physics in $B-\overline{B}$ mixing?

Backup slides

Pull values

Quantity	Deviation						
	wrt SM fit	wrt Sc. I	wrt Sc. I wrt Sc. II				
$\widehat{B}_{\mathcal{K}}$	0.0 σ	-	0.0 σ	-			
f_{B_s} [MeV]	0.0 σ	0.9 σ	0.8 σ	1.2 σ			
$\widehat{\mathcal{B}}_{\mathcal{B}_{\mathtt{S}}}$	1.2 σ	0.8 σ	0.9 σ	0.3 σ			
f_{B_s}/f_{B_d}	0.0 σ	0.9 σ	0.0 σ	0.0 σ			
$\mathcal{B}_{B_{s}}/\mathcal{B}_{B_{d}}$	1.0 σ	0.9 σ	1.0 σ	0.9 σ			
$\widetilde{\mathcal{B}}_{S,B_s}(m_b)$	1.0 σ	0.7 σ	1.1 σ	0.2 σ			
α	1.1 σ	0.2 σ	0.7 σ	1.0 σ			
$\phi_{\it d}^{\Delta} + 2 eta$	2.8 σ	0.8 σ	2.6 σ	1.3 σ			
γ	0.0 σ	0.0 σ	0.0 σ	0.0 σ			
$\phi_s^{\Delta} - 2\beta_s$	2.3 σ	0.5 σ	2.4 σ	1.6 σ			

Quantity	Deviation				
	wrt SM fit	wrt Sc. I	wrt Sc. II	wrt Sc. III	
$ \epsilon_{\pmb{\kappa}} $	0.0 σ	-	0.0 σ	-	
Δm_d	1.0 σ	0.9 σ	1.0 σ	0.8 σ	
$\Delta m_{ m s}$	0.3 σ	0.7 σ	0.9 σ	1.2 σ	
A_{SL}	2.9 σ	1.2 σ	2.9 σ	2.2 σ	
a_{SL}^d	0.9 σ	0.2 σ	0.8 σ	0.3 σ	
$a_{ ext{SL}}^{ ext{s}}$	0.2 σ	0.7 σ	0.2 σ	0.0 σ	
$\Delta\Gamma_{s}$	1.0 σ	0.2 σ	1.1 σ	0.9 σ	
${\cal B}({\cal B} o au u)$	2.9 σ	0.7 σ	2.6 σ	1.0 σ	
${\cal B}({\it B} ightarrow au u)$ and ${\it A}_{ m SL}$	3.7 σ	0.9 σ	3.5 σ	2.0 σ	
$\phi_{ extsf{s}}^{\Delta} - 2eta_{ extsf{s}}$ and $A_{ extsf{SL}}$	3.3 σ	0.8 σ	3.3 σ	2.3 σ	
$\mathcal{B}(extsf{B} ightarrow au u)$, $\phi_{ extsf{s}}^{\Delta} - 2eta_{ extsf{s}}$, A	$4_{ m SL}$ 4.0 σ	0.6 σ	3.8 σ	2.1 <i>σ</i>	

Dimension-5 terms

Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \to s_R$ into $b_R \to d_R$ transitions. This "leakage" is strongly constrained by K $-\overline{\rm K}$ mixing. Trine, Wiesenfeldt, Westhoff 2009

Dimension-5 terms

Realistic GUTs involve further dimension-5 Yukawa terms to fix the Yukawa unification in the first two generations. One can use these terms to shuffle a part of the effect from $b_R \to s_R$ into $b_R \to d_R$ transitions. This "leakage" is strongly constrained by K $-\overline{\rm K}$ mixing. Trine, Wiesenfeldt, Westhoff 2009

Similar constraints can be found from $\mu \to e \gamma$.

Ko, Park, Yamaguchi 2008; Borzumati, Yamashita 2009; Girrbach, Mertens, UN, Wiesenfeldt 2009.

 $V_{ub}ert$ Global analysis SUSY GUTs **Conclusions**

SO(10) superpotential

$$W_{Y} = \frac{1}{2} 16_{i} Y_{u}^{ij} 16_{j} 10_{H} + \frac{1}{2} 16_{i} Y_{d}^{ij} 16_{j} \frac{45_{H} 10'_{H}}{M_{Pl}} + \frac{1}{2} 16_{i} Y_{N}^{ij} 16_{j} \frac{\overline{16}_{H} \overline{16}_{H}}{M_{Pl}}$$

with the Planck mass M_{Pl} and

16_i: one matter superfield per generation, i = 1, 2, 3,

 10_{H} : Higgs superfield containing MSSM Higgs superfield H_{u} ,

 $10'_{H}$: Higgs superfield containing MSSM superfield H_{u} ,

45_H: Higgs superfield in adjoint representation,
 16_H: Higgs superfield in spinor representation.

Input:

- squark masses M_ũ, M_ã of right-handed up and down squarks,
- trilinear term a^d₁ of first generation,
- gluino mass m_{g̃3},
- ullet arg μ ,
- $\tan \beta$

Input:

- squark masses M_ũ, M_ã of right-handed up and down squarks,
- trilinear term a^d₁ of first generation,
- gluino mass m_{g̃3},
- $\arg \mu$,
- tan β

RG evolution from $M_{\rm ew}$ to $M_{\rm Pl}$: find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

Input:

- squark masses M_ũ, M_ã of right-handed up and down squarks,
- trilinear term a^d₁ of first generation,
- gluino mass m_{g̃3},
- $\arg \mu$,
- $\tan \beta$

RG evolution from $M_{\rm ew}$ to $M_{\rm Pl}$: find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

RG evolution back to $M_{\rm ew}$: calculate $|\mu|$ from electroweak symmetry breaking

Input:

- squark masses M_ũ, M_ã of right-handed up and down squarks,
- trilinear term a^d₁ of first generation,
- gluino mass m_{g̃3},
- $\arg \mu$,
- tan β

RG evolution from $M_{\rm ew}$ to $M_{\rm Pl}$: find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

RG evolution back to $M_{\rm ew}$: calculate $|\mu|$ from electroweak symmetry breaking

Repeat RG evolution $M_{\rm ew} \to M_{\rm Pl} \to M_{\rm ew}$: find all particle masses and MSSM couplings

 $V_{ub}ert$ Global analysis SUSY GUTs **Conclusions**

Methodology of CMM analyis

Input:

- squark masses $M_{\tilde{u}}$, $M_{\tilde{d}}$ of right-handed up and down squarks,
- trilinear term a^d₁ of first generation,
- gluino mass m_{g̃3},
- $\arg \mu$,
- tan β

RG evolution from $M_{\rm ew}$ to $M_{\rm Pl}$: find universal soft terms a_0 , m_0 , $m_{\tilde{g}}$ and D.

RG evolution back to $M_{\rm ew}$: calculate $|\mu|$ from electroweak symmetry breaking

Repeat RG evolution $M_{\rm ew} \to M_{\rm Pl} \to M_{\rm ew}$: find all particle masses and MSSM couplings

adjust CP phase ξ to approximate experimental Δ_s best.