Reconciling Supersymmetry and Thermal Leptogenesis by Entropy Production

Jörn Kersten

University of Hamburg

Based on Jasper Hasenkamp, JK, PRD 82, arXiv:1008.1740 [hep-ph]

The Gravitino Problem

- 2 Entropy Production
- 3 Candidates for Entropy Producers

Leptogenesis

Leptogenesis
 ν_R decays in early universe → C, CP violation

$$|\epsilon| = rac{|\Gamma(
u_{
m R}
ightarrow \ell H) - \Gamma(
u_{
m R}
ightarrow \overline{\ell} \, \overline{H})|}{\Gamma(
u_{
m R}
ightarrow \ell H) + \Gamma(
u_{
m R}
ightarrow \overline{\ell} \, \overline{H})} < rac{3}{16\pi} rac{M_{
m R} \sqrt{\Delta m_{
m atm}^2}}{v^2}$$

- \sim baryon asymmetry $\eta_{\mathsf{B}} = \frac{n_{\mathsf{B}}}{n_{\gamma}} \propto |\epsilon| < M_{\mathsf{R}} \cdot \dots$
- Observed $\eta_{\rm B}\sim 6\cdot 10^{-10} \sim \textit{M}_{\rm R}\gtrsim 2\cdot 10^9~{\rm GeV}$

Leptogenesis

• See-saw mechanism
Heavy neutrinos $\nu_{\rm R}$ with Majorana masses $M_{\rm R}$ \sim very light observed neutrinos

Leptogenesis
 ν_R decays in early universe → C, CP violation

$$|\epsilon| = \frac{|\Gamma(\nu_{\mathsf{R}} \to \ell H) - \Gamma(\nu_{\mathsf{R}} \to \overline{\ell} \, \overline{H})|}{\Gamma(\nu_{\mathsf{R}} \to \ell H) + \Gamma(\nu_{\mathsf{R}} \to \overline{\ell} \, \overline{H})} < \frac{3}{16\pi} \frac{M_{\mathsf{R}} \sqrt{\Delta m_{\mathsf{atm}}^2}}{v^2}$$

- \sim baryon asymmetry $\eta_{\mathsf{B}} = \frac{n_{\mathsf{B}}}{n_{\gamma}} \propto |\epsilon| < M_{\mathsf{R}} \cdot \dots$
- Observed $\eta_{\rm B}\sim 6\cdot 10^{-10} \sim M_{\rm R}\gtrsim 2\cdot 10^9\,{\rm GeV}$
- Thermal leptogenesis: $\nu_{\rm R}$ produced thermally at $T>M_{\rm R}$

Reheating temperature $T_{\rm R} \gtrsim 2 \cdot 10^9 \, {\rm GeV}$

By-Product: Gravitinos

- Superpartner of graviton in supergravity
- Thermal production at high temperature

$$\Omega_{3/2}^{\mathrm{tp}}h^2\propto rac{T_{\mathrm{R}}}{m_{3/2}}$$

By-Product: Gravitinos

- Superpartner of graviton in supergravity
- Thermal production at high temperature

$$\Omega_{3/2}^{\mathrm{tp}} h^2 \simeq 0.11 \left(\frac{T_{\mathrm{R}}}{2 \cdot 10^9 \, \mathrm{GeV}} \right) \left(\frac{67 \, \mathrm{GeV}}{m_{3/2}} \right) \left(\frac{M_{\widetilde{g}}}{10^3 \, \mathrm{GeV}} \right)^2$$

By-Product: Gravitinos

- Superpartner of graviton in supergravity
- Thermal production at high temperature

$$\Omega_{3/2}^{\mathrm{tp}} h^2 \simeq 0.11 \left(\frac{T_{\mathrm{R}}}{2 \cdot 10^9 \, \mathrm{GeV}} \right) \left(\frac{67 \, \mathrm{GeV}}{m_{3/2}} \right) \left(\frac{M_{\widetilde{g}}}{10^3 \, \mathrm{GeV}} \right)^2$$

- Observed dark matter abundance: $\Omega_{DM} h^2 \simeq 0.11$
- ∼ Compatible with thermal leptogenesis:
 - Gravitino LSP with mass ≥ 60 GeV
 - Heavier non-LSP gravitino

Gravitino Problem

- Gravitino interacts via gravity → extremely weakly
 - \sim lifetime for decays gravitino $\to \widetilde{X}$ and $\widetilde{X} \to$ gravitino $\sim 10^{-2} \, \mathrm{s} \, \dots$ years

Gravitino Problem

- - \sim lifetime for decays gravitino $\to \widetilde{X}$ and $\widetilde{X} \to$ gravitino $\sim 10^{-2} \, \mathrm{s} \, \dots$ years
- Energetic decay products destroy nuclei produced in Big Bang Nucleosynthesis (BBN)
- Unstable gravitino: $T_{\rm R} \lesssim 10^7 \,{\rm GeV}$ or $m_{3/2} \gg 1 \,{\rm TeV}$
 - ~ Conflict with thermal leptogenesis, or unnatural spectrum
- Gravitino LSP: Next-to-LSP (NLSP) long-lived
 - → Ruled out for standard cosmology (exception: sneutrino)

Solutions

- Abandon SUSY
- Abandon thermal leptogenesis
- Fine-tune to exploit loopholes
- Very heavy gravitino
- Gravitino LSP + harmless NLSP
 - New interactions → faster decay
 - Very light gravitino \sim faster decay, $\Omega_{3/2} \not \propto T_{\rm R}$
 - Harmless decay products
 - Abundance smaller than thermal relic abundance
- Arbitrary combinations

Solutions

- Abandon SUSY (heresy)
- Abandon thermal leptogenesis
- Fine-tune to exploit loopholes
- Very heavy gravitino
- Gravitino LSP + harmless NLSP
 - New interactions → faster decay
 - Very light gravitino \sim faster decay, $\Omega_{3/2} \not\propto T_{\rm R}$
 - Harmless decay products
 - Abundance smaller than thermal relic abundance
- Arbitrary combinations

Solutions

- Abandon SUSY (heresy)
- Abandon thermal leptogenesis
- Fine-tune to exploit loopholes
- Very heavy gravitino
- Gravitino LSP + harmless NLSP
 - New interactions → faster decay
 - Very light gravitino \sim faster decay, $\Omega_{3/2} \not\propto T_{\rm R}$
 - Harmless decay products
 - Abundance smaller than thermal relic abundance
- Arbitrary combinations

The Gravitino Problem

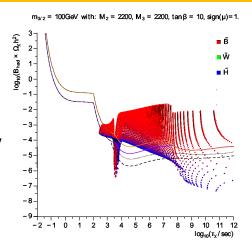
- Entropy Production
- 3 Candidates for Entropy Producers

NLSP Dilution by Entropy Production

- ullet BBN bounds depend on $\Omega_{
 m NLSP} \propto rac{n_{
 m NLSP}}{n_{\gamma}} \propto rac{{
 m number\ density}}{{
 m entropy\ density}}$
- Increase of entropy by factor △ (after freeze-out)
 - \sim dilution of NLSP density: $\Omega_{NLSP} \rightarrow \frac{\Omega_{NLSP}}{\Delta}$
 - \sim reduction of impact on BBN

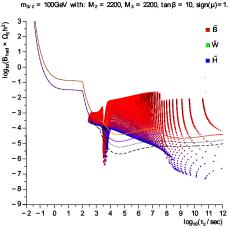
NLSP Dilution by Entropy Production

- ullet BBN bounds depend on $\Omega_{
 m NLSP} \propto rac{n_{
 m NLSP}}{n_{\gamma}} \propto rac{{
 m number\ density}}{{
 m entropy\ density}}$
- Increase of entropy by factor △ (after freeze-out)
- Entropy from decay of non-relativistic particle ϕ


$$rac{
ho_\phi}{
ho_{\sf rad}} \propto rac{{\cal R}^{-3}}{{\cal R}^{-4}} = {\cal R}$$

- $\rightarrow \phi$ dominates energy density eventually
- Maximal dilution:

$$\Delta \lesssim 10^3$$


Neutralino NLSP with Entropy Production

- Gravitino LSP, $m_{3/2} = 100 \text{ GeV}$
- Neutralino NLSP, 100 GeV < m_{NLSP} < 2 TeV
- $\Delta = 10^3$

Neutralino NLSP with Entropy Production

- Gravitino LSP, $m_{3/2} = 100 \text{ GeV}$
- Neutralino NLSP, 100 GeV < m_{NLSP} < 2 TeV
- $\Delta = 10^3$

- Light neutralinos allowed for significant higgsino or wino content
- Pure binos remain excluded
- → Thermal leptogenesis possible

Neutralino NLSP with Entropy Production

→ Thermal leptogenesis possible

The Gravitino Problem

2 Entropy Production

Candidates for Entropy Producers

General Requirements

•
$$T_{\text{dec}} < T_{\text{fo}}$$
 \sim dilute Ω_{NLSP}

2
$$T_{\rm dec} \gtrsim 4 \, {\rm MeV}$$
 \sim BBN ok

$$\Phi_{\overline{\rho_{\mathsf{rad}}}}(T_{\mathsf{fo}}) < 1$$
 \sim standard NLSP freeze-out

5 Br(
$$\phi \rightarrow \text{NLSP}$$
) $\simeq 0 \longrightarrow \text{solution of NLSP decay problem}$

$$\textbf{ 6} \ \, \mathsf{Br}(\phi \to \mathsf{Gravitino}) \simeq \mathbf{0} \ \, \leadsto \mathsf{correct} \ \Omega_{3/2}^{\mathsf{tp}} = \Omega_{\mathsf{DM}}$$

- Compatibility with gravitino DM (e.g., gravitino remains stable)
- Well-behaved superpartners

Generic or necessary for long-lived particles even without demanding entropy production

Entropy from Saxion Decays

- SUSY: axion supermultiplet (axion, saxion ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9$ GeV

Entropy from Saxion Decays

- Strong CP problem → Peccei-Quinn mechanism → axion
- SUSY: axion supermultiplet (axion, saxion ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9 \, \text{GeV}$
- Saxion produced in thermal equilibrium:

$$\Delta \lesssim 55 \left(\frac{f_a}{10^{12} \, \text{GeV}}\right)^{\frac{2}{3}} \ll 10^3 \ \bigodot$$

- Failure due to conflicting requirements:
 - Sufficient production → strong coupling (small f_a)
 - Late decay \sim weak coupling (large f_a)
- Generic if same coupling responsible for production and decay

Entropy from Saxion Decays

- Strong CP problem → Peccei-Quinn mechanism → axion
- SUSY: axion supermultiplet (axion, saxion ϕ , axino)
- Interactions suppressed by characteristic scale $f_a \gtrsim 10^9 \, \text{GeV}$
- Saxion produced in thermal equilibrium:

$$\Delta \lesssim 55 \left(\frac{f_a}{10^{12} \, \mathrm{GeV}}\right)^{\frac{2}{3}} \ll 10^3 \ \odot$$

- Failure due to conflicting requirements:
 - Sufficient production → strong coupling (small f_a)
 - Late decay \sim weak coupling (large f_a)
- Generic if same coupling responsible for production and decay
- Further problem with axino

Non-Thermally Produced Saxion

- Saxion field displaced from potential minimum during inflation
- Oscillations around minimum → non-relativistic particles

Non-Thermally Produced Saxion

- Saxion field displaced from potential minimum during inflation
- Oscillations around minimum → non-relativistic particles
- Example with maximal dilution factor:

$$\Delta \sim 10^3$$
 Saxion mass ~ 10 GeV Axino mass ~ 1 TeV $f_a \sim 10^{10}$ GeV Initial amplitude $\sim 10^4 \, f_a$ $m_{
m NLSP} \simeq 200$ GeV $m_{
m 3/2} \simeq 100$ GeV

Conclusions

- Gravitino problem in SUSY scenarios with thermal leptogenesis
- Solution: gravitino LSP, dilution of NLSP by entropy
- Neutralino NLSP with large higgsino or wino component ok
- Constraints on entropy-producing particle
- Thermally produced particles fail
- Saxion produced in oscillations works

Other Effects of Entropy

- $\ \odot \ \Omega_{\text{NLSP}} \to \frac{\Omega_{\text{NLSP}}}{\Delta}$
- © Gravitino density: $\Omega_{3/2} \to \frac{\Omega_{3/2}}{\Delta}$
- \odot Baryon asymmetry: $\eta_{\mathsf{B}} o rac{\eta_{\mathsf{B}}}{\Delta}$

Other Effects of Entropy

- © Gravitino density: $\Omega_{3/2} \to \frac{\Omega_{3/2}}{\Delta}$
- \odot Baryon asymmetry: $\eta_{\mathsf{B}} o rac{\eta_{\mathsf{B}}}{\Delta}$

Remember $\eta_{\rm B} \propto \textit{M}_{\rm R}$ and $\textit{T}_{\rm R} \gtrsim \textit{M}_{\rm R}$

- \sim To keep observed $\eta_{\rm B}$: $M_{\rm R} \to M_{\rm R} \Delta$ and $T_{\rm R} \to T_{\rm R} \Delta$
- $\sim \Omega_{3/2} \propto T_{\rm R}$ unchanged

Other Effects of Entropy

$$\odot$$
 $\Omega_{NLSP} o rac{\Omega_{NLSP}}{\Delta}$

- © Gravitino density: $\Omega_{3/2} \rightarrow \frac{\Omega_{3/2}}{\Delta}$
- \odot Baryon asymmetry: $\eta_{\mathsf{B}} o rac{\eta_{\mathsf{B}}}{\Delta}$

Remember $\eta_{\rm B} \propto M_{\rm R}$ and $T_{\rm R} \gtrsim M_{\rm R}$

- ightarrow To keep observed $\eta_{\rm B}$: $M_{\rm R}
 ightarrow M_{\rm R} \Delta$ and $T_{\rm R}
 ightarrow T_{\rm R} \Delta$
- $\sim \Omega_{3/2} \propto T_{\rm R}$ unchanged

Without Δ	With △
η_{B}	η_{B}
T_{R}	$T_{R}\Delta$
$\Omega_{3/2}$	$\Omega_{3/2}$
Ω_{NLSP}	$\frac{\Omega_{NLSP}}{\Delta}$