Top-quark pair cross-section measurement in the lepton+jets channel at ATLAS

Michele Pinamonti (INFN Udine & Università di Trieste) of behalf of the ATLAS collaboration

46th Recontres de Moriond Electroweak Interactions and Unified Theories

La Thuile, March 17, 2011

Introduction

Top pairs at LHC

- $pp \rightarrow t\bar{t}$ @ 7 TeV: theoretical approx. NNLO $\sigma_{t\bar{t}} = 165^{+11}_{-16} \text{ pb}$ \Rightarrow with 35 pb⁻¹ >5000 $t\bar{t}$ pairs expected
- A first ATLAS x-section measurement (combining ℓ+jets with b-tagging and di-lepton channels) already performed with 2.9 pb⁻¹: σ_{tī} = 145 ± 31 (stat.) ⁺⁴²₋₂₇ (syst.+lumi.) [CERN-PH-EP-2010-064, December 8, 2010]
- With 35 pb⁻¹ and with more sophisticated techniques a precision measurement is possible
- A measurement in ℓ+jets channel only and without any use of b-tagging is here presented [ATLAS-CONF-2011-023, March 14, 2011]
- Complementary measurements are being finalized:
 - *l*+jets channel with *b*-tagging
 - di-lepton channel
 - all-hadronic channel

2 / 15

Top event selection

Single lepton $t\bar{t}$ event selection

The following final state selection has been chosen to isolate e/μ +jets $t\bar{t}$ events and to keep sufficient statistics for the measurement:

e+jets

- 1 isolated e with $p_T > 20$ GeV
- *m*_T(*W*) > 25 GeV
- 3 or more jets with $p_T > 25$ GeV

μ +jets

- 1 isolated μ with $p_T > 20$ GeV

- 3 or more jets with $p_T > 25 \text{ GeV}$

Top event selection

NFN

$tar{t} ightarrow e$ +jets event display

Top event selection

Selected events and MC expectations

	events	e + 3 jets	$e + \ge$ 4 jets	μ + 3 jets	μ $+$ \geq 4 jets	
	tī	116	194	161	273	
	QCD*	62	22	120	51	
	W+jets	580	180	1100	310	
	Z+jets	32	18	70	25	
	single <i>t</i>	22	11	32	15	
	WW,WZ,ZZ	9	3	16	4	
	Data	781	400	1356	653	
80 P 80 P 70 SULA	TLAS $e+\geq 4$ -jets reliminary $data$ $L = 35 \text{ pb}^{-1}$ $U\bar{t}$ $W + jets$ Other Bkg OCD OCD W uncertain W	$\begin{array}{c} 140\\ 0\\ 0\\ 0\\ 120\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\mu + \ge 4$ -jets y • data b^{1} $t\bar{t}$ W + jets Other Bkgd QCD W constraints	*: QCD numbers	come from data-driven esti	imate
40 30 20		60- 40- 20-		Top mas as the m 3-jet cor	s reconstructed ass of the highest- <i>p_T</i> nbination in the even	
0	100 200 300 400 500 600 m _{jj} [G	700 0 100 200 ieV]	0 300 400 500 600 700 m _{jj} [GeV]			

Cross-section extraction

Multivariate Kinematic measurement

- For each of the 4 channels a Likelihood discriminant is built
- Using 3 variables with different distributions between $t\bar{t}$ and W+jets:
 - 1 lepton pseudorapidity $\eta(e/\mu)$ (ℓ from $t\bar{t}$ more central)
 - 2 lepton charge $q(e/\mu)$ (W production in pp collisions is charge-asymmetric)
 - 3 exponential of the event Aplanarity $exp(-8 \times A)$ (*) ($t\bar{t}$ events more isotropic)

Cross-section extraction

Results and uncertainties

 $\sigma_{t ar{t}} = 171 \pm 17 ({
m stat.}) \, \, {}^{+20}_{-17} ({
m syst.}) \, \, \pm 6 ({
m lumi.}) \, \, {
m pb}$

Source	$\Delta\sigma/\sigma$ [%]		
Stat.	9.7		
ℓ reco, ID, trigger	-1.9 / +2.6		
Jet energy reco	-6.1 / +5.7		
QCD norm.	±3.9		
QCD shape	±3.4		
W+jets shape	± 1.2		
Other backg.	± 0.5		
ISR/FSR	-2.1 / +6.1		
PDFs	-3.0 / +2.8		
Parton shower	±3.3		
NLO generator	± 2.1		
MC statistics	± 1.8		
Pile-up	± 1.2		
Total syst.	-10.2 / +11.6		
Luminosity	3.4		

Conclusions

Summary of the current results

- A measurement of the tt
 triangle constraints
 triangle constrain
- The measurement doesn't use any *b*-tagging information
- ullet The total uncertainty is $\sim 15\%$ (mainly due to statistics and jet energy scale)

- 3 cross-check measurements using different methods show good agreement
- Good agreement with the previous measurement (145 \pm 31 $^{+42}_{-27}$ pb)
- ℓ +jets with *b*-tagging, di-lepton & all-hadronic channels are under approval

Backup Slides

Fake leptons or 'QCD' background

QCD multi-jet can enter the $\ell+jets$ selection:

Backup

- e/μ from heavy quarks decays
- $\gamma \rightarrow e^+ e^-$
- jets reconstructed as e

Fit Method - used in *e*+jets channel

- Extract the ∉_T distribution shape for QCD from loose non-tight lepton selection

Data Driven estimation

Basic idea:

- Use a looser l definition (non isolated or failing some identification requirement)
- Assume the same shape of ∉_T for QCD events with default and loose ℓ selection

Matrix Method - used in μ +jets channel

• Solve the 2 equation system:

 $N^{loose} = N^{loose}_{fake} + N^{loose}_{real}$

 $N^{tight} = \epsilon_{fake} N^{loose}_{fake} + \epsilon_{real} N^{loose}_{real}$

- and ϵ_{real} from $Z > \ell \ell$ events (*)
- *: ϵ_{fake} and ϵ_{real} are the efficiencies for a loose ℓ event to pass the tight selection, for fake lepton (QCD) and real lepton (from W, Z, top) events.

10 / 15

Backup

W transverse mass

Projective likelihood approach:

- TMVA package used
- The likelihood discriminant D_i for an event i is defined as:

$$D_i = \frac{L_{signal}(i)}{L_{signal}(i) + L_{bkgd}(i)}$$

• The individual likelihoods are products of the corresponding probability densities of the discriminating input variables *x*_k:

$$L_{signal}(i) = \prod_{k=1}^{3} p_{signal}^{k}(x_{k}(i))$$
$$L_{bkgd}(i) = \prod_{k=1}^{3} p_{bkgd}^{k}(x_{k}(i))$$

IN-N

Backup

Likelihood Discriminant Templates

A binned maximum likelihood fit is applied to the discriminant shapes. Likelihood functions are defined for each of the four channels and are multiplied together in a combined fit to extract the total number of $t\bar{t}$ events.

The aplanarity is defined as:

$$A=\frac{3}{2}\lambda_3,$$

where

 $\lambda_1\geq\lambda_2\geq\lambda_3,$

are the three eigen values of the momentum tensor

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |\vec{p_{i}}|^{2}},$$

where α and β are spatial components and the i runs over jets & leptons

