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WHAT IS THE MASS OF ELEMENTARY PARTICLES?
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SOON TO VERIFY

• Gluon fusion

• Electroweak gauge boson decay

• Electroweak gauge boson fusion

•Quark fusion
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SOURCES OF UNCERTAINTY

• Higher order perturbative corrections (Th)

• Parton densities (Exp + Th)

• Coupling and mass parameters (Exp + Th)

• Model ( Th)

• Infrared behavior of cross-sections with colliding energy (Th)

• Infrared behavior of cross-sections with cuts (Exp+Th)

σ =
�

ij

fi(x1)⊗ fj(x2)⊗ σij(L, E,MH ,αs,α,Mt,Mb,Mw,Mz, . . . , “cuts
��)
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THE GLUON FUSION CROSS-
SECTION

• LO, NLO, NNLO QCD

• Re-summing threshold logarithms 
and 

• Gluon density and strong coupling uncertainty

• ``Heavy’’ top-quark approximation

• Electroweak corrections

• Trifles such as finite Higgs width, combining 
with branching ratios, …

• Experimental cuts

• Physics beyond the Standard Model

π2
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NLO QCD CORRECTIONS
�
αs(µ)

π

�2

cross-section for gluon fusion via a heavy (top) quark:

Soft real and 
virtual corrections

Wilson coefficient of Heavy Quark 
Effective Theory (~ UV nature)
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GLUON-GLUON LUMINOSITY

• Very stable from NLO to 
NNLO 

• Within 5% from LO for a light 
Higgs boson at the LHC for 
reasonable factorization scales.

• ~ 20% higher than LO for 
large factorization scales   Lgg(Mh=120GeV, LHC7, MSTW08)
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GLUON-GLUON LUMINOSITY

• Very stable from NLO to 
NNLO 

•Within 15-20% from LO for 
a heavy Higgs boson at the 
LHC. 

Lgg(Mh=500GeV, LHC7, MSTW08)
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GLUON-GLUON LUMINOSITY

• Very stable from NLO to 
NNLO 

•Within 15-20% from LO for 
a light Higgs boson at the 
TEVATRON. 

Lgg(Mh=165GeV, TEVATRON, MSTW08)
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LARGE K-FACTORS
�
1 + 4%

�
9.876 + 5.5

�
+ . . .

�

�
1 + 4%

�
9.876 + 0.9053

�
+ . . .

�

NLO/LO gluons 
and alpha_s

Two-loop bottom
amplitude. 

NLO

LO
∼ (80%− 105%)

Bound to have a large K-factor of at least 1.5-1.6
due to pi’s and the Wilson coefficient

Milder K-factor if gluon fusion is mediated through 
a light quark (bottom) as, for example, in large 

tan(beta) MSSM.   

π2

π2

NLO

LO
∼ (80%− 105%)

Wilson
coefficient
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LARGE K-FACTORS (II)

NLO/LO gluons 
and alpha_s

•Logarithmic enhancement at small transverse momentum
•Integrable: reliable perturbative expansion for inclusive cross-sections.
•The mu scale is arbitrary, but no need to be senseless. 
•Choices very different than  pt  spoil the perturbative expansion.

NLO

LO
∼ (80%− 105%)

�
1 +

αs(µ)

π

�
. . .+ 6 log

�
µ2

p2T

�
+ ...

��

MH = 165GeV @TEVATRON �< pt >∼ 25GeV�
1 + 4%

�
9.876 + 5.5 +O(20.)

�
+ . . .

�

NLO

LO
∼ (80%− 105%)�

1 + 4%
�
9.876 + 5.5 +O(6.)

�
+ . . .

�

NLO/LO gluons 
and alpha_s

π2 Wilson
coefficient Pt-Log

µ = Mh

µ =
Mh

4
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LARGE K-FACTORS (II)

NLO/LO gluons 
and alpha_s

•Logarithmic enhancement at small transverse momentum
•Integrable: reliable perturbative expansion for inclusive cross-sections.
•The mu scale is arbitrary, but no need to be senseless. 
•Choices very different than  pt  spoil the perturbative expansion.

NLO

LO
∼ (80%− 105%)

�
1 +

αs(µ)

π

�
. . .+ 6 log

�
µ2

p2T

�
+ ...

��

NLO

LO
∼ (80%− 105%)

NLO/LO gluons 
and alpha_s

π2 Wilson
coefficient Pt-Log

µ = Mh

µ =
Mh

4

MH = 120GeV @LHC7 �< pt >∼ 35GeV�
1 + 4%

�
9.876 + 5.5 +O(15.)

�
+ . . .

�

�
1 + 4%

�
9.876 + 5.5 +O(1.)

�
+ . . .

�
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GLUON FUSION CROSS-
SECTION

• Known through NNLO in 
fixed order perturbation 
theory

• ``Large’’ NLO perturbative 
corrections. 

• Smaller but significant NNLO 
corrections.  

• Small scale variation at NNLOTEVATRON MH = 165GeV

scale variation
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GLUON FUSION CROSS-
SECTION

• Known through NNLO in 
fixed order perturbation 
theory

• ``Large’’ NLO perturbative 
corrections. 

• Smaller but significant NNLO 
corrections.  

• Small scale variation at NNLO

scale variation

LHC7 MH = 120GeV
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PERTURBATIVE CONVERGENCE?

• Three main worries from the NLO calculation:  
     - Large  NLO Wilson coefficient  ~15-20%
     - Pi^2 = 2 x Nc x (Pi^2/6)  term   ~ 30-40% 
     - Large  logs (2 x Nc x Log(pt^2/mu^2)) of 
      transverse momentum (sensitive to mu) ~1% - 80%

• Comforting that the NNLO corrections are mild.  
The Wilson coefficient has a regular perturbative expansion.  

At NNLO:
Wilson

coefficient C ∼ 1 + (4%) · 5.5 + (4%)2 · 10.
Chetyrkin, Kniehl, Steinhauser
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PERTURBATIVE CONVERGENCE?
• Half of Pi^2 belongs to a different Wilson coefficient when 

matching to SCET.  It ``exponentiates’’. We are left to explain 
with the other half, which is not as much of a concern. 
At NNLO and  beyond:

1 +
αs

π
· (π2) + . . . ∼ e

αs
π ·

�
π2

2

� �
1 +

αs

π

�
π2

2

�
. . .

�

Ahrens, Becher, Neubert

•  Logs due to soft radiation exponentiate  and can  
  be   resummed  with NNLL accuracy at all orders.

•  Yield small corrections beyond NNLO which are  negligible
  for  natural scale choices  close  to  

Catani, de Florian, Grazzini

µ ∼< pt >

Ahrens, Becher, Neubert
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EXHAUSTIVE STUDIES OF 
LARGE AND SMALL EFFECTS

• Total cross-section at NLO 
(Dawson; Spira, Djouadi, Graudenz, Zerwas; ...)

• Total cross-section at NNLO (Harlander,Kilgore; 
CA,Melnikov; Ravindran, Smith, van Neerven,...)

• Threshold resummation
(Catani, de Florian, Grazzini, Nason; Moch, Vogt; Laanen, 
Magnea; Kulesza, Sterman; Idilbi, Xi, Ma, Juan; Ravindran; 
Ahrens, Becher, Neubert)

• Tranverse momentum 
resummation (Bozzi, Catani, de Florian, Grazzini)
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GLUON FUSION EWK
• Two-loop light fermion  amplitude 

(Aglietti,Bonziani, Degrassi, Vicini)

• Full two-loop EWK amplitude (Actis, 
Passarino, Sturm, Uccirati)

• Three-loop mixed QCD and EWK 
(CA,Boughezal,Petriello)

• One-loop EWK, with 
Pt > 0 (Keung, Petriello)

18



HEAVY TOP QUARK EXPANSION

• Beyond the leading  term 
(Chetyrkin, Kniehl, Steinhuser; 
Kraemer, Laenen, Spira) in the 
heavy  quark-mass  
expansion at NNLO 
(Harlander, Mantler, Ozeren; 
Pak,Rogal,Steinhauser)

• High energy limit 
(Marzani,Ball,del Duca, Forte, Vicini)
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PARTON DENSITIES
• PDF uncertainties have surprised us  

at times!

• estimate  of alpha_s uncertainty 
(Martin,Stirling,Thorne, Watt)

• comparable  or bigger uncertainty 
than scale choice

affects Tevatron 
high mass 

exclusion limits

389.0 fb +8.1%
−11.7%(scale)+13.6%

−12.0%(αs + pdf)
@ TEVATRON Mhiggs = 165 GeV

90%CL
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PDF DIFFERENCES

• Three NNLO pdf sets: Martin,Striling,Thorne,Watt 
(MSTW)  Alekhin,Bluemlein,Klein,Moch (ABKM) 
Jimenez,Reya (JR)

• Important differences on gluon density and 
alpha_s beyond estimated uncertainties which 
affect Higgs cross-sections, especially @ 
Tevatron

• No compelling  reason to choose  one 
set over  the  others.

•  MSTW  includes Tevatron jet data, and their 
alpha_s is  very close to world average

• Need to check compatibility of all pdf sets 
with observables sensitive to high-x at NNLO. 
Jets and tops at LHC7 will be soon of help. 

ABKM

MSTW
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MODEL DEPENDENCE OF
CROSS-SECTIONS AND THEIR 

UNCERTAINTY
• Higgs sector is unexplored territory with particle experimentation. 

• It is the most popular theoretical portal to BSM physics.  Higgs cross-
sections depend on the  model. Can we read out BSM Higgs boson cross-
sections from Standard Model results? 

• In many cases yes, due to identical initial and final state, and the uniformity 
of field theory perturbative techniques.

• Nevertheless, the Standard Model is the simplest scenario. 

• Obtaining precise Higgs cross-sections beyond the SM is a generally more 
intricate or difficult task. Let us see two simple examples. 
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GLUON FUSION WITH NON-FIXED 
BOTTOM YUKAWA COUPLING 

• This process receives  contribution from 
both top-quark and bottom-quark loops. 

• Top-quark amplitudes are known to 
NNLO, using effective theory. 

• Bottom-quark amplitudes are less 
precise, and only known to NLO.

• Bottom loops are luckily suppressed in 
the Standard Model.

• In models with non-fixed bottom Yukawa 
coupling they may become sizable. 

M = Yt · M(NNLO)
t + Yb · M(NLO)

b

precise,
dominates in 

the SM

less precise,
suppressed in 

the SM
not  necessarily 

suppressed in th SM
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BOTTOM DOMINANCE OF 
UNCERTAINTY

Top 
dominates

Bottom 
dominates

Yb

Yb

Scale 
Variation Cross-section 

nornalized to SM

Such differences in the uncertainty should be accounted for 
in placing exclusion limits on Higgs bosons of models with 

enhanced bottom Yukawa coupling
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GLUON FUSION IN MODELS 
WITH NEW HEAVY PARTICLES

• Amplitudes factorize in terms of a universal  HQET amplitude 
and a Wilson coefficient depends on the model and the new 
heavy particles.

• QCD corrections are very much like in the SM. 

• Care is needed for some important details, beyond the  effective 
theory approach,  which matter at the 10% level collectively in 
the SM.

MQ = CQMglobal
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EXAMPLE: FOURTH SM-LIKE 
QUARK GENERATION

• It is a  poor approximation to scale up the SM cross-section by a  factor  9. 

• Finite heavy quark mass effects cannot be neglected at LO.  

• bottom amplitudes and electroweak corrections  do not scale by a  factor  
of 3. 

• Different NNLO Wilson coefficient:

M4gen = Ct+B+TMglobal

@NLO : Ct+T+B = 3Ct →
σ4gen

σSM

����
NLO,eff

= 9

@NNLO : Ct+T+B �= Ct + CT + CB
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• A program to compute the total 
cross-section for Higgs boson 
production in a generalized  SM 
with additional heavy quarks and 
arbitrary. 

• Can be used for SM, SM with 
additional generations, composite 
Higgs models, etc

• Exact QCD calculation through 
NLO. Effective theory at NNLO

• All NNLO pdf sets and error 
estimation.  LHAPDF

• SM Electroweak corrections

• Finite width effects, interfaced to 
HDECAY   

• Gluon fusion and bottom fusion 
cross-sections

• Beta version in the material of this 
presentation 

Higgs.All.Inclusive.Rates
CA, S. Buehler,  F. Herzog,  A. Lazopoulos
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GLUON FUSION CROSS-SECTION 
IN SM4GEN WITH H.A.I.R

MH = 110GeV σ = 183.4 pb+9%
−10%(scale)

+8%
−8%(αs + pdf)90%cl

MH = 165GeV σ = 74.22 pb+8%
−9%(scale)

+8%
−8%(αs + pdf)90%cl

MH = 200GeV σ = 46.31 pb+7%
−9%(scale)

+8%
−8%(αs + pdf)90%cl

MSTW2008

LHC 7TeV

Predictions of equal precision as  the Standard Model 
cross-section. 
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CONCLUSIONS

• No time to discuss other channels and their uncertainties. Usually less 
complicated higher order effects.  

• Precision of Higgs  production rates is impressive, and at the 10-15% 
level.  After a lot of hard work and numerous  contributions from 
independent and different approaches. 

• Have learnt to live with large K-factors, with a good understanding of 
their  analytic structure. 

• Progress  in improving  theory predictions must continue on various  
levels (pdfs,higher orders, new models) 
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