Supernovae Ia and Dark Energy

The Supernova Legacy Survey 3-year results

on behalf of SNLS Delphine Hardin, LPNHE, Université Pierre et Marie Curie, Paris, France

SNe Ia and Dark Energy

- 1. Measuring the Energy Content of the Universe
- 2. Cosmology with type Ia supernovae
- 3. SNLS 3-years cosmological constraints
- 4. Conclusion & Future

Measuring the Universe Energy Content

Universe in expansion : d \propto expansion factor **a**(**t**)

expansion history ⇔ energy content

when observing a luminous source, we measure :

- the redshift $z : 1+z = \Delta \lambda / \lambda = a^{-1}(t)$
- the flux $F : \rightarrow$ luminosity distance $d_L(L : luminosity)$

$$\mathbf{d}_{\mathbf{L}} = (\mathbf{L} / 4\pi \mathbf{F})^{1/2}$$

•*Hubble Diagram* : $d_L(z)$

$$d_L(z) = \frac{cz}{H_0} \times \mathcal{D}(z; \Omega_M, \Omega_X, w_0, \ldots)$$

2 fluids : matter and X : • matter : $\rho_M(t_0)$ or : $\Omega_M = \rho_M(t_0)/\rho_{\text{crit}}(t_0)$ expansion is accelerating ? \rightarrow • X : Ω_X perfect fluid with equation of state $w = p/\rho$,

Standard Candles to Probe the Expansion History

$$d_L \equiv \left(\frac{L}{4\pi F}\right)^{1/2} = \frac{cz}{H_0} \times \mathcal{D}(z; \Omega_M, \Omega_X, w)$$

Problem : we measure the flux **F**, how do we know the luminosity **L** ????

STANDARD CANDLES : $L \approx cste$

 \rightarrow compare the fluxes of 2 standard candles at z_1 and z_2

$$\frac{d_L(z_1)}{d_L(z_2)} = \left(\frac{F_2}{F_1}\right)^{1/2} = \mathcal{F}(z_i; \Omega_M, \Omega_X, w)$$

Type Ia Supernovae as Standard Candles

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
show little (40%) peak luminosity dispersion
they are not standard candles

BUT :

- they show a light curve shape - luminosity relation : **brighter - slower**

- they also exhibit a color-luminosity relation : brighter-bluer

Standardisation : after empirical correction :

- → 16% dispersion on L_{peak}
- → 8% precision on distance d_L

Type Ia Supernovae as Standard Candles

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
show little (40%) peak luminosity dispersion
they are not standard candles

BUT :

- they show a light curve shape - luminosity relation : brighter - slower

- they also exhibit a color-luminosity relation : brighter-bluer

Standardisation : after empirical correction :

- → 16% dispersion on L_{peak}
- → 8% precision on distance d_L

Type Ia Supernovae as Standard Candles

thermonuclear explosion of a white dwarf : bright events (~10¹¹ L_☉)
show little (40%) peak luminosity dispersion
they are not standard candles

BUT :

- they show a light curve shape - luminosity relation : **brighter - slower**

- they also exhibit a color-luminosity relation : brighter-bluer

Standardisation : after empirical correction :

- \rightarrow 16% dispersion on L_{peak}
- \rightarrow 8% precision on (relative) distances $\mathbf{d}_{\mathbf{L}}$

Type Ia Supernovae as cosmological tools

comparing fluxes at different redshift

$$\frac{d_L(z_1)}{d_L(z_2)} = \left(\frac{F_2}{F_1}\right)^{1/2} = \mathcal{F}(z_i; \Omega_M, \Omega_X, w)$$

F is restframe B band flux (m_B magnitude) measured at ≠ redshifts
→ in ≠ obs. frame filters
→ flux inter-calibration of passbands

· nux must cuntration of pubboands

Calibration is crucial (dominant systematics in survey)

to get $m_B \underline{at peak}$, shape & color : \rightarrow empirical spectro-photometric modeling $S(\lambda, t)$ to interpolate between photometric measurements

 \rightarrow trained on a set of nearby & distant SNe

Type Ia Supernovae as cosmological tools

standardisation & distance estimator

- $\mathbf{m}_{\mathbf{B}}$, *shape* , *color* measured on each SN
- M_B , α , β fitted on Hubble diagram along with cosmology
- α : brighter-slower relation
- β : brighter-bluer relation -- no assumption whether due to
 - intrisic SNe Ia color variation

or

- due to extinction by dust at the SN location, in SN host galaxy or along line of sight

Component of the Deep Canadian-France-Hawaii Telescope Legacy Survey

- detection & follow-up with 1 instrument :
 3.6-m telescope @ Hawaii (Mauna Kea, 4200m),
 Megacam (CEA/IRFU), 1 sq. degree
- → thorough understanding & **calibration** of instrument
- \rightarrow deep survey (Malmquist bias)
- 4 filters griz : \rightarrow m_B at \neq z, B-V or U-B *colors* for all SNe
- *rolling search* : repeated observations of 4 fields
 detection & follow-up at the same time
 - \rightarrow get early, pre-discovery SN photometry
 - \rightarrow well sampled & well measured lightcurve : m_B , lightcurve shape

40 nights /year during 5 years (end : 08/2009)

- \rightarrow ~ 450 SNe Ia
- → deep SN-free images : photometric study of SNe host galaxies

Spectroscopic Follow-up :

SNLS

10-m class telescopes @ Hawaii, Chile

- \rightarrow spectroscopic identification for all SNe Ia in SNLS-3 sample
- \rightarrow redshift *z* measurement (host galaxy)
- \rightarrow complementary program on spectral studies : pec. SN, UV ...

Balland et al. 2009

SNLS-3 years results :

240 SNLS (z ~ 0.2 - 1.) SNe Ia, extended with nearby + SDSS-II @ z<0.2
2 independent analysis (France/Canada)

- **improved calibration** (Regnault et al., 2009)
 - \rightarrow <1% precision
 - \rightarrow main systematic source : tailing Megacam magnitude system to the magnitude system of the nearby SN (Landolt)
- ⇒ improved spectro-photometric supernova modeling SALT2 (Guy et al., 2010) : model trained on nearby + SNLS SN (no distance info)
 → UV model : nearby SN U/u-band data less used, but highz (SNLS) optical (g) data

host galaxy nature influence (Sullivan et al., 2010, Hardin et al. in prep) « standard » SNe Ia brighter in massive galaxies

- \rightarrow M_{B1} & M_{B2} whether SN host galaxy masss < 10¹⁰ M_{\odot}:
- Systematics included in cosmology fit of an extended nearby + SDSS Hubble Diagram : Conley et al. 2010

SNIa host galaxies

- Are M_B , α and β "universal" parameters? Any host galaxy (environmental) dependence?
- ugrizJHK host data allows estimations of:
 - host colors & luminosity

SNLS

- host star formation rate & stellar mass content

SNIa host galaxies

Hubble residuals versus host mass

SNLS

- the mean SNe Ia is brighter in low-mass galaxies (their mean *shape* is >) : taken into account by the brighter-slower relation but
- the "standard"(*) SNe Ia is brighter (4 σ) in massive galaxies
- (*=after lightcurve shape and colour correction, i.e. *shape*=0, *color*=0)
- subtle effect 0.08mag smaller than stretch and color corrections

SNIa host galaxies

Improved cosmological analysis

SNLS

Use two M_B – one for high-mass galaxies and one for low-mass

$$\mu_B = m_B - M_B^1 + \alpha(s-1) - \beta c \quad \text{when } H < H_{\text{split}}$$
$$\mu_B = m_B - M_B^2 + \alpha(s-1) - \beta c \quad \text{when } H \ge H_{\text{split}}$$

0.0

0.1

0.2

0.3

 Ω_{M}

with host galaxy mass term

0.4

0.5

0.6

SNLS-3 extended Hubble Diagram

123 nearby (z ~ 0.05) & 93 SDSS-II (z~ 0.1-0.4) & 242 SNLS (z ~ 0.2-1.) & 14 HST (z ~ 0.7-1.4) SNe Ia

Universe still accelerating !

For a flat universe : require cosmic acceleration at > 99.999%

SNLS-3 + flat universe :

compatible with w=-1 (cosmological constant Λ , vacuum energy)

Conley et al., 2010

Sytematics in details :

SNLS

Description		Ω_m	w	Rel. Area ^a	w for $\Omega_m = 0.27$
Stat only	($0.19^{+0.08}_{-0.10}$	$-0.90^{+0.16}_{-0.20}$	1	-1.031 ± 0.058
All systematics	(0.18 ± 0.10	$-0.91^{+0.17}_{-0.24}$	1.85	$-1.08^{+0.10}_{-0.11}$
Calibration	($0.191^{+0.095}_{-0.104}$	$-0.92^{+0.17}_{-0.23}$	1.79	-1.06 ± 0.10
SN model	($0.195^{+0.086}_{-0.101}$	$-0.90^{+0.16}_{-0.20}$	1.02	-1.027 ± 0.059
Peculiar velocities	($0.197^{+0.084}_{-0.100}$	$-0.91^{+0.16}_{-0.20}$	1.03	-1.034 ± 0.059
Malmquist bias	($0.198^{+0.084}_{-0.100}$	$-0.91^{+0.16}_{-0.20}$	1.07	-1.037 ± 0.060
Non-Ia contaminati	ion ($0.19^{+0.08}_{-0.10}$	$-0.90^{+0.16}_{-0.20}$	1	-1.031 ± 0.058
MW extinction corr	rection	$0.196^{+0.084}_{-0.100}$	$-0.90^{+0.16}_{-0.20}$	1.05	-1.032 ± 0.060
SN evolution		$0.185^{+0.088}_{-0.099}$	$-0.88^{+0.15}_{-0.20}$	1.02	-1.028 ± 0.059
Host relation	($0.198^{+0.085}_{-0.102}$	$-0.91^{+0.16}_{-0.21}$	1.08	-1.034 ± 0.061

Table 7 Identified Systematic Uncertainties

Combining SNLS_3 with other cosmological probes : BAO + WMAP7 + Flat

Conclusion

- SNLS3 SNe + external sample :

w at aprecision of 0.1 for a flat universe, given $\Omega_{\rm M}$ measurement

- full systematics included

(primary contributor : calibration

& inter-calibration on external photometric systems)

- taking into account host influence

Future :

- SDSS & SNLS-5 joined analysis :
 - \rightarrow 300 SDSS + 400 SNLS SNeIa
 - \rightarrow take full advantage of inter-calibration possibilities
 - \rightarrow full SN model re-training

- SkyMapper, DES, LSST, WFIRST, EUCLID.... will address some of possible systematics very difficult to significantly improve on precision w(z)