Imperial College London

Beyond the Standard Model Higgs Searches at the Tevatron

Tim Scanlon

On behalf of the CDF and DØ Collaborations

Outline

Results up to 8.2 fb⁻¹

- Minimal SUSY SM (MSSM)
- Next-to-MSSM
- Hidden Valley Higgs
- Fermiophobic Higgs
- Conclusions

Imperial College

London

Delivered > 10.5 fb⁻¹

[Thanks to all my Tevatron colleagues]

Neutral SUSY Higgs

- Minimal Supersymmetric Standard Model (MSSM)
 - Introduction
 - > Neutral Higgs bosons (ϕ) searches
 - $b\phi \rightarrow bbb$
 - $b\phi \rightarrow b\tau\tau$
 - $\phi \rightarrow \tau \tau$
 - Combination
 - Prospects
- Next-to-MSSM
- Hidden Valley Higgs
- Fermiophobic Higgs
- Conclusions

Imperial College

London

Similar overall sensitivities \rightarrow Combine

Coupling of neutral Higgs to bquarks enhanced by tan(β)

BR(bb) ~ 90%

BR(ττ) ~ 10%

➤ 2 Charged: H[±]

- tan(β) = ratio of vacuum
 expectation values of 2 Higgs fields
- > Production enhanced by $tan^2(\beta)$
- 3 channels best suited to benefit from enhanced b-quark coupling
 - $\succ \phi b \rightarrow b b b$
 - $\succ \ \phi b \to \tau \tau b$
 - $\succ \phi \to \tau \tau$

Imperial College

London

q

ത്ത

g ,666

 $\phi \rightarrow \tau \tau$

 \boldsymbol{b}

Neutral MSSM Higgs \rightarrow bb + b[b]

- Signal
 - At least 3 b-tagged jets
 - Peak in dijet mass spectrum
- Background
 - Heavy flavour multi-jet
 - Predicted from data/MC
- DØ: 5.2 fb⁻¹ Published 2011
 - > Consider multiple jet pairings
 - Kinematic likelihood
- CDF: 2.2 fb⁻¹ Prelim. Winter 2010
 - Secondary vertex b-tagger
 - \succ 2D fit m₁₂ vs vertex mass variable
- Set limits using dijet invariant mass

Imperial College London

Neutral MSSM Higgs \rightarrow bb + b[b]

- ➢ 90 < m_A < 300 GeV</p>
- MSSM scenarios
 - No-mixing & m_h^{max} benchmark scenarios

Tim Scanlon Moriond EW 11

Imperial College

London

Imperial College London

9

• Signal: Three possible search channels

- $\succ \tau_{\mu}\tau_{had}, \tau_{e}\tau_{had}, \tau_{e}\tau_{\mu} \text{ channels}$
- Isolated lepton with opposite sign
- Main bkgs.: Z→ττ (irreducible), multijet, W+jets
- Visible mass used to derive limits

$$m_{vis} = \sqrt{(P_{\tau_1} + P_{\tau_2} + P_{MET})^2}$$

- **DØ** $(\tau_{\mu}\tau_{had})$: 2.2 fb⁻¹ Summer 2008
 - > Combined with published 1 fb⁻¹ channels : $\tau_e \tau_{had}$, $\tau_\mu \tau_{had}$, $\tau_\mu \tau_e$
 - ➤ 5.4 fb⁻¹ publication imminent
- CDF (τ_µτ_{had}, τ_eτ_µ channels):
 ➤ 1.8 fb⁻¹ published 2009

Imperial College London

DØ Preliminary (1-2.2 fb⁻¹)

10

Tim Scanlon Moriond EW 11

Neutral MSSM Higgs $\rightarrow \tau_{l} \tau_{had/l}$

Imperial College

Signal: Three possible search channels

- \succ $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, $\tau_{e}\tau_{\mu}$ channels
- Isolated lepton with opposite sign
- Main bkgs.: $Z \rightarrow \tau \tau$ (irreducible), multi-jet, W+jets
- Visible mass used to derive limits

$$m_{vis} = \sqrt{(P_{\tau_1} + P_{\tau_2} + P_{MET})^2}$$

- DØ ($\tau_{\mu}\tau_{had}$): 2.2 fb⁻¹ Summer 2008
 - Combined with published 1 fb⁻¹ channels : $\tau_e\tau_{had,}\,\tau_\mu\tau_{had,}\,\tau_\mu\tau_e$
 - 5.4 fb⁻¹ publication imminent
- CDF ($\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, $\tau_{e}\tau_{\mu}$ channels): 1.8 fb⁻¹ published 2009

London

DØ Preliminary (1-2.2 fb⁻¹)

10GeV

800

Multijet & W+jets

- Tevatron combination: $\phi \rightarrow \tau \tau$ results CDF (1.8fb⁻¹)+ DØ (2.2fb⁻¹)
- DØ combination: $\phi \rightarrow \tau\tau$ (2.2fb⁻¹), $b\phi \rightarrow b\tau\tau$ (1.2fb⁻¹), $b\phi \rightarrow bbb$ (2.6fb⁻¹)
 - ➤ tan(β) > 30 @ 130 GeV

• Probing very interesting regions

- > 9 fb⁻¹ data now available
 - Aiming for rapid inclusion into analyses
- Stable and well developed analyses
 - Further algorithmic/analysis improvements
- Short term (early summer)
 - Updated searches (> 8 fb⁻¹):
 - $\phi \rightarrow bb + b(b)$ & $\phi \rightarrow \tau\tau$ & $b\phi \rightarrow b\tau\tau$
 - New combinations
 - > Down to $tan\beta \sim 20$ for low m_A
 - Or discovery

bbb

Next-to-MSSM

- Minimal Supersymmetric Standard Model (MSSM)
- Next-to-MSSM (NMSSM)
- Hidden Valley (HV) Higgs
- Fermiophobic Higgs
- Conclusions

NMSSM Charged Higgs $\rightarrow a \rightarrow \tau \tau$

• Search for NMSSM A boson ($m_A < 2 m_b$)

- > Search in b-tagged, lepton, \geq 3 jets
- CDF 2.7 fb⁻¹ Winter 2010

- Signature
 - Additional isolated tracks in event
- Fit p_T spectrum isolated tracks
 - Method validated using Z decays
 - World's 1st limits in this mode

Imperial College London

Data

BR(t→H[±]b)=0.11

50 \vdash BR(A $\rightarrow \tau \overline{\tau}$)=1

Hidden Valley Higgs

- Minimal Supersymmetric Standard Model (MSSM)
- Next-to-MSSM Higgs
- Hidden Valley (HV) Higgs
- Fermiophobic Higgs
- Prospects & Conclusions

- Search for long lived heavy particles with displaced secondary vertex (SV)
 - Hidden valley (HV) model
 - CDF 5.8 fb⁻¹ Dec 2010

3+ jets, 2 SV tagged, large HV decay length

ho

- Model background from data
 - Probability density functions models SM SV background
 - 10k pseudo-events generated for each data event

Fermiophobic Higgs

- Minimal Supersymmetric Standard Model (MSSM)
- Next-to-MSSM
- Hidden Valley (HV) Higgs
- Fermiophobic Higgs
- Conclusions

Fermiophobic Higgs $\rightarrow \gamma \gamma$

- Coupling to fermions highly suppressed
- Search for diphoton signature
 - ~3% mass resolution
- Backgrounds
 - Direct production, γ+jets/dijets,
 Drell-Yan
- DØ 8.2 fb-1 preliminary result
 - > Two photons in central calorimeter
 - 5 variable MVA to separate signal/bkg
 - 20% improvement in limit
- Excluded m_{hf} < 112.5 GeV
 - Better than LEP limit
 - CDF: 4.2 fb⁻¹ excludes m_{hf} < 106 GeV</p>

Conclusions

- Minimal Supersymmetric
 Standard Model (MSSM)
- Next-to-MSSM
- Hidden Valley Higgs
- Fermiphobic Higgs
- Conclusions

- Wide range of beyond SM Higgs searches performed by CDF & DØ with up to 8.2 fb⁻¹ Run II data
 - No signal observed (yet)
 - Probing theoretically very interesting regions
- Updated CDF and DØ analyses
 - x2-5 additional data being analysed
 - Improvements in analysis techniques
 - Combinations
 - Expect to be sensitive beyond tanß ~20
- Updates on short timescale
 - Rapid increase in sensitivity in coming months

Very exciting times ahead -watch this space!

Backup slides

Tevatron Performance

Tevatron continues to perform well

- Over 10.5 fb⁻¹ delivered to each experiment
- Deliver ~2.5 fb⁻¹ per year

CDF and DØ experiments

• Both detectors extensively upgraded for Run IIa

- New silicon vertex detector
- New tracking system
- Upgraded µ chambers

• CDF: New plug calorimeter & ToF

• DØ

- New solenoid & preshowers
- Run IIb: New inner layer in SMT
 & L1 trigger

Imperial College London

Supersymmetric Higgs Sector

- Minimal Supersymmetric Standard Model (MSSM)
 - 2 Higgs doublets
 - 5 Physical Higgs bosons
 - 3 Neutral: (A, h and H) $\rightarrow \phi$
 - 2 Charged: H[±]
- Need 2 parameters to calculate all Higgs masses and couplings at tree level
 - ≻ m_A
 - tan(β) = ratio of vacuum expectation values of two Higgs fields
- Coupling of neutral Higgs to b-quarks enhanced by tan(β)
 - > Production enhanced by $tan^2(\beta)$

Imperial College London

τ_{had} -Identification

• CDF: Isolation based

- 1 or 3 tracks in variable size and isolation cone
- Validated via W/Z measurements
 - Efficiency ~ 40-50%
 - Jet fake rate < 1%</p>

DØ: 3 NN's for each τ type
➤ Validated via Z's

b-jet Identification

Decay

Lengh (L_{xv})

Tagger

+ NN

3.5

Fake Rate (%)

4.5

JLIP

Imperial College London

DØ B-tagging

B-tagging - (DØ) Certification

Imperial College London

Imperial College London

- Set limits
 - > $\sigma \mathbf{x} BR(\phi \rightarrow \tau \tau)$ @ 95% confidence level (CL)
 - ➢ 90 < m_A < 250 GeV</p>
- MSSM scenarios
 - > No-mixing & m_h^{max} benchmark scenarios
 - > $tan(\beta) > 40 60$ excluded for $m_A < 180$ GeV

Neutral MSSM Higgs \rightarrow bb + b[b]

Background Prediction

- Large multijet background
- Theoretical cross sections very large errors
- DØ: Sample Composition
 - Fit MC to data over several btagging points
- DØ: Background Shape
 - Use double b-tagged data to predict triple b-tagged background

- Final limits corrected for width
 - Not negligible at high tanß

- Mass plots
 - > Low likelihood cross check, low and high mass likelihoods

Imperial College London

• Next-to-MSSM Higgs Sector

- Two additional pseudo-scalar Higgs bosons (s and a)
 - h → aa dominates
- \succ If m_a < 2m_t
 - Dominant decay $a \to \mu \mu$
 - Limit m_h > 82 GeV
- \succ If $2m_{\tau} < m_a < 2m_b$
 - Dominant decay $a \to \tau \tau$
 - Limit m_h > 86 GeV
- Published 4.2 fb⁻¹ search

NMSSM Higgs \rightarrow aa

- Next-to-MSSM Higgs Sector
 - Two additional pseudo-scalar Higgs bosons (s and a)
 - $h \rightarrow aa$ dominates
- $m_a < 2m_\tau : h \rightarrow aa \rightarrow \mu\mu\mu\mu$
 - Two pairs of collinear muons
- Event Selection

Imperial College

London

- > Two muons $\Delta R(\mu,\mu)$ > 1
- > 'Companion' tracks $\Delta R(\mu, track) < 1$
- **Backgrounds:** Multi-jet, $Z/\gamma^* \rightarrow \mu\mu$
- Set 95% limits in 2D mass window

 σ x BR < 10-5.6 fb (m_h = 100 GeV)

NMSSM Higgs \rightarrow aa

- $2m_{\tau} < m_a < 2m_b : h \rightarrow aa \rightarrow \mu\mu\tau\tau$
 - $\succ \mu$ decay suppressed
 - $\succ \tau$ decay dominates
 - > Back-to-back μ and τ pairs
- Backgrounds: Multi-jet, Z/γ^* +jets $\rightarrow \mu\mu$ +jets
- Event Selection

 - > Opposite missing $E_T/\mu/e$
- Set limits @ 95% using dimuon mass

Imperial College London

MSSM benchmarks

- Five additional parameters due to radiative correction
 - M_{SUSY} (parameterizes squark, gaugino masses)
 - > X_t (related to the trilinear coupling $A_t \rightarrow$ stop mixing)
 - ► M₂ (gaugino mass term)
 - $> \mu$ (Higgs mass parameter)
 - Mgluino (comes in via loops)

- Two common benchmarks
 - Max-mixing Higgs boson mass m_h close to max possible value for a given tanβ
 - ➢ No-mixing vanishing mixing in stop sector → small mass for h

	m _h -max	no-mixing
M _{SUSY}	1 TeV	2 TeV
x,	2 TeV	0
M ₂	200 GeV	200 GeV
μ	±200 GeV	±200 GeV
mg	800 GeV	1600 GeV

Combine three neutral Higgs searches

19 sub-channels

Integrated Luminosity / fb^{-1}			
Channel	Run IIa	Run IIb	Final Variable
$h \to \tau_e \tau_{\rm had}$	1.0	-	visible mass
$h ightarrow au_{\mu} au_{ m had}$	1.0	1.2	visible mass
$h ightarrow au_e au_\mu$	1.0	-	visible mass
$bh \to b\tau_{\mu}\tau_{\rm had}$	-	1.2	1D-discriminant
$bh ightarrow bb\overline{b}$	1.0	1.6	M_{bb}

- Large number systematic errors
 Assumed 0 or 100% correlated
- Uses ~7 times luminosity of previous combination

- Combine results across experiments
 - $\succ \tau_{\mu}\tau_{had}, \tau_{e}\tau_{had}, \tau_{e}\tau_{\mu}$
 - DØ: up to 2.2 fb⁻¹
 - CDF: 1.8 fb⁻¹
- Combinations performed with Bayesian and Modified Frequentist
 - Most conservative result chosen

Tim Scanlon Moriond EW 11

Charged Higgs \rightarrow cs

- Search for H^{\pm} in top decays
- CDF: Summer 2008 2.2fb⁻¹
 - Lepton + jet channel
 - \succ H[±] \rightarrow cs
 - MSSM: tan(β) < 1 and m_{H±} < 130 GeV

- Di-jet mass used to set limits
 - → Assume BR(H[±]→cs) = 1

Charged Higgs \rightarrow cs/ τv

- Search top decays in dilepton, lepton+jets, lepton+tau channels
 - Compare predicted/observed yields
 - DØ: Published 2009 1fb⁻¹
- Two models:
 - > Tauonic: $H^{\pm} \rightarrow \tau v$
 - MSSM: tan(β) > 1
 - > Leptophobic: $H^{\pm} \rightarrow cs$
 - MSSM: $tan(\beta) < 1$ and $m_{H\pm} < 130$ GeV

