

Looking for SUSY

35 pb⁻¹ recorded in 2010

Colin Bernet (CERN, CNRS/LLR), for the CMS collaboration

Artist's view

SUSY searches at hadron colliders

SUSY searches at hadron colliders

The CMS Strategy

- Generic searches addressing most possible final states
- Robust physics objects
 - leptons, jets, missing momentum, τ 's...
- Data-driven background prediction for all searches

punch-line of this talk

• Well established statistical techniques

Outline

- Object reconstruction
- Multilepton searches
- 2-lepton searches

 same sign + jets + "MET"
- 1-lepton search
 e or mu + jets + "MET"
- 0-lepton search
 jets + "MHT"
- Inclusive search
 (e or mu) + jets, R & MR
- Limits / Interpretation

Physics objects definition

Outline

- Object reconstruction
- Multilepton searches + jets, MET
- 2-lepton search
 same sign + jets + "MET"
- 1-lepton search
 e or mu + jets + "MET"
- 0-lepton search
 jets + "MHT"
- Inclusive search
 (e or mu) + jets, R & MR
- Limits / Interpretation

Multi-Leptons: e, μ , τ

- **Baseline selection:**
 - 3+ isolated leptons, pT > 8 GeV/c

- 2 search regions:

• HT > 200 GeV

GMSM: LSP = gravitino If NLSP = sleptons: $2 \times (\chi^0 \rightarrow \tilde{l}^+ \tilde{l}^- \rightarrow ggll)$

> Copious source of 4 lepton events

> > 9

- 55 independent channels

> Background prediction and results table in back-up

data-driven method in back-up

- Baseline selection:
 - 2 same sign, isolated leptons (e or μ)
 - p_{T,1}>20, p_{T,2}>10 GeV
 - ≥ 2 jets:
 - p_T > 30 GeV, |η|<2.5
 - MET:
 - > 30 GeV (ee and μμ)
 - > 20 GeV (eµ)
- Main backgrounds:
 ttbar (lepton from b)

Outline

- For each analysis:
 - Selection & main background
 - A nice idea in some details
 - Number of events expected and observed.

- Object reconstruction
- Multilepton searches
- 2-lepton searches

 same sign + jets + "MET"
- 1-lepton search
 - e or mu + jets + "MET"
- 0-lepton search
 jets + "MHT"
- Inclusive search
 (e or mu) + jets, R & MR
- Limits / Interpretation

1 lepton

Analysis principles – the lepton spectrum method

- **Baseline selection:**
 - Isolated lepton:
 - pT > 20 GeV
 - 4 jets:
 - pT > 30 GeV, |n|<2.4

- Main backgrounds
 - ttbar, W+jets.
 - Use the muon pT spectrum to predict the MET spectrum
 - MET resolution and W polarization accounted for.

15/03/2011

1 lepton

Results

Outline

- For each analysis:
 - Selection & main background
 - A nice idea in some details
 - Number of events expected and observed.

- Object reconstruction
- Multilepton searches
- 2-lepton searches

 same sign + jets + "MET"
- 1-lepton search– e or mu + jets + "MET"
- O-lepton search
 jets + "MHT"
- Inclusive search
 (e or mu) + jets, R & MR
- Limits / Interpretation

0 lepton: Jets + MHT

- Baseline selection
 - ≥ 3 jets
 - |η| < 2.5
 - pT > 50 GeV
 - HT > 300 GeV
 - HT trigger fully efficient
 - Veto isolated e or $\boldsymbol{\mu}$
 - $\Delta \phi(j1, 2, MHT) > 0.3$
 - Δφ(j3, MHT) > 0.5
 - Event cleaning

* cMSSM:
$$m_0 = 60 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, A_0 = 0, \tan \beta = 10 \text{ and } \operatorname{sign}(\mu) > 0$$

0 lepton: Jets + MET

Background & Results

- QCD: next slide
- $Z \rightarrow vv + jets$:
 - − $Z \rightarrow II (W \rightarrow Iv + jets)$:
 - Ignore leptons (correct for W/Z)
 - Small stat, used as x-check
 - $\gamma + jets:$
 - Ignore photon, correct for γ/Z
- W + jets (including top):
 μ + jets:
 - Lost leptons:
 - Ignore µ
 - Use e-μ universality
 - lepton ε corrected for, obtained from tag & probe
 - $W \rightarrow \tau$ hadronic decay
 - Replace μ by simulated τ had.

*cMSSM: $m_0 = 60 \text{ GeV}, m_{1/2} = 250 \text{ GeV}, A_0 = 0, \tan \beta = 10 \text{ and } \text{sign}(\mu) > 0$. 16

0 lepton: Jets + MHT

Rebalance+smear QCD prediction

photon + jet

15/03/2011

Outline

- For each analysis:
 - Selection & main background
 - A nice idea in some details
 - Number of events expected and observed.

- Object reconstruction
- Multilepton searches
- 2-lepton searches

 same sign + jets + "MET"
- 1-lepton search
 e or mu + jets + "MET"
- 0-lepton search
 jets + "MHT"
- Inclusive search
 - (e or mu) + jets, R & MR
- Limits / Interpretation

http://arxiv.org/abs/1006.2727v1

0 or 1 lepton: R&M_R

M_R definition: Signal

Moriond EWK, 2011

http://arxiv.org/abs/1006.2727v1

0 or 1 lepton: R&M_R

M_R definition: QCD di-jet

http://arxiv.org/abs/1006.2727v1

0 or 1 lepton: R&M_R

New discriminating variables

0 or 1 lepton: R&M_R

Results

Outline

- For each analysis:
 - Selection & main background
 - A nice idea in some details
 - Number of events expected and observed.

- Object reconstruction
- Multilepton searches
- 2-lepton searches

 same sign + jets + "MET"
- 1-lepton search
 e or mu + jets + "MET"
- 0-lepton search
 jets + "MHT"
- Inclusive search
 (e or mu) + jets, R & MR
- Limits / Interpretation

Limits in the cMSSM

"jets+MHT" fully hadronic analysis

- ATLAS observed limit
- good agreement
 between expected
 and observed limit

α_T analysis:

- designed for fast discovery (QCD killer)
 - submitted beg. Jan
 - accepted last week

Limits in the cMSSM

"jets+MHT" fully hadronic analysis

Same plot as in prev. slide. Stretched for easy comparison with the next one

Limits in the CMSSM

"R&MR" fully hadronic analysis

- Roughly the same limits as for the "jets + MHT" analysis
- Complementary
- Full scan up to
 m₀ = 1 TeV on the way

Limits in the CMSSM

1 lepton + jets

Simplified Models

Focus on the topology, put a limit on cross-section

CMS Experiment at LHC, CERN Data recorded: Tue Oct 26 07:13:54 2010 CEST Run/Event: 148953 / 70626194 Lumi section: 49 Orbit/Crossing: 12688625 / 466

Summary & outlook

- Data-driven background predictions
 - stat error will decrease
 - relatively easy to adapt to different conditions
 - e.g. increased pile-up

Many cross-checks

Looking forward to more of these events

Well established

statistical methods

Moriond EWK, 2011

Back-up

Multi-Leptons: e, μ, τ

More details

Background prediction

- Z+jets:
 - Channels without τ
 - fake lepton from a jet
 - dijet events → probability f for an isolated track to fake a lepton
 - Background prediction: N_{di-lepton}.f.N_{tracks}
 - Channels with τ
 - Isolation sideband
- ttbar and VV+jets
 - Small contribution, well controlled in simulation
 - ttbar simulation controlled on OS-OF events in data

Systematic errors

- Shared by all channels
 - luminosity: 11%
 - renormalization scale: 10%
 - pdfs: <14%</p>
 - trigger efficiency: 5%
- Lepton efficiency from tag & probe:
 - muons: 1.5 to 3%
 - electrons: up to 10%
 - tau: up to 30% (stat limited)
- Jet energy scale (HT): < 14%

Multi-Leptons: e, μ , τ

Backgrounds, expected signals, observed events

		After I	epton ID Re	equirement	/	Inclusive		Hadronic		ML01 Signals	
	Z+iets	tī	VV+iets	ΣSM	Data	ΣSM	Data	ΣSM	Data	Incl.	Hadr.
Channel	3-lepton channels										
ll(OS)e	1.7	0.1	1.2	4.4 ± 1.5	6	0.1 ± 0.1	0	0.2 ± 0.1	1	121.4	141.5
ll(OS)u	2.83	0.2	1.7	4.7 ± 0.5	6	0.10 ± 0.1	0	0.1 ± 0.1	0	123.6	120.8
ll(OS)T	121.5	0.5	0.7	123 ± 16	127	0.4 ± 0.1	0	_	_	80.5	_
$ll(OS)\tau$	476	2.7	3.9	484 ± 77	442	_	_	0.6 ± 0.2	1	_	68
ll'T	0.72	0.5	0.2	1.7 ± 0.7	3	0.4 ± 0.2	2	_	_	18.6	-
$ll'\tau$	4.7	2.9	0.6	11.2 ± 2.5	10		_	0.4 ± 0.1	1	_	12.3
ll(SS)l'	0.13	0.1	0.0	0.2 ± 0.1	0	0.2 ± 0.1	0	0	0	2.8	2.8
ll(SS)T	0.25	0.0	0.1	0.7 ± 0.4	3	0.1 ± 0.1	0	_	_	9.0	_
$ll(SS)\tau$	1.4	0.0	0.1	3.0 ± 1.1	3	\\- `		0.0 ± 0.1	0	-	6.9
$\Sigma lll(T)$	127.1	1.4	3.8	135 ± 16	145	1.3 ± 0.2	2	_	_	355.9	-
$\Sigma lll(\tau)$	486.8	6.0	7.5	507 ± 77	467		- 7 /	1.3 ± 0.3	3	-	349.5
lTT	47.1	0.33	0.1	48 ± 9	30	0.4 ± 0.1	0	- \	_	8.0	-
Channel	4-lepton channels										
1111	0	0	0.2	0.2 ± 0.1	2	0	0	0	0	163.9	149.2
111T	0	0	0.1	0.1 ± 0.1	0	0	0		-	62.3	-
$lll\tau$	0	0	0.1	0.1 ± 0.1	0	< <u>-</u>	-	0	0	-	33.2
llTT	0	0	0	0.0 ± 0.1	0	0	0	-	-	20.6	-
$ll\tau\tau$	3.1	0.1	0.1	3.2 ± 0.7	5	_	-	0	0	-	16.8
Σ llll(T)	0	0	0.3	0.3 ± 0.1	2	0	0	_	_	246.8	-
$\Sigma lll(\tau)$	3.1	0.1	0.4	3.5 ± 0.7	5	-	-	0	0		199.2

MET>50 GeV HT>200 GeV

data-driven background estimation: single fake lepton

• ε_{iso} from "b tag & probe:

away from the lepton

– one b-tagged jet

- all cuts applied
- but: one of the leptons not isolated → N events

Figure 6: (Left) The probability to mismeasure the electron charge as a function of η in the P_T range 10–100 GeV, as obtained from Monte Carlo simulation. (Right) Same-sign *ee* invariant mass distribution in data compared with $Z \rightarrow ee$ Monte Carlo expectations.

Results, including tau channels

Table 2: Data and Monte Carlo yields summarized for all analyses.										
Search Region	ее	μμ	еµ	total	95% C.L. UL Yield]				
Lepton Trigger				$\nabla \nabla$]				
$\not \!$		$\langle \rangle \rangle$		\searrow						
MC	0.05	0.07	0.23	0.35	(7.3 for LM0)					
BG predicted	0.23 ± 0.35	0.23 ± 0.26	0.74 ± 0.55	1.2 ± 0.8						
observed	0			0	3.1					
$H_T > 200 \text{ GeV}$										
MC	0.04	0.10	0.17	0.32	(9.6 for LM0)					
BG predicted	0.71 ± 0.58	0.01 ± 0.24	0.25 ± 0.27	0.97 ± 0.74		Additional cuts				
observed	0	0	1	1	4.4	for HT trigger:				
H_T Trigger										
Low- p_T										
MC	0.05	0.16	0.21	0.41	(9.1 for LM0)	HI>300 GeV				
BG predicted	0.10 ± 0.07	0.30 ± 0.13	0.40 ± 0.18	0.80 ± 0.31		MET>30 GeV				
observed	1	0	0	1	4.5					
	еτ	μτ	ττ	total	95% C.L. UL Yield					
au enriched										
MC	0.36	0.47	0.08	0.91	(2.0 for LM0)					
BG predicted	0.10 ± 0.10	0.17 ± 0.14	0.02 ± 0.01	0.29 ± 0.17						
observed	0	0	0	0	3.4	MET>50 GeV				

The HT trigger allows to reach low pT leptons and taus

1 lepton search

More on the lepton spectrum method

- W polarization very well known for ttbar [1]
- Not the case for W+jets
 polarized pdf uncertainty
- No need to correct for W polarization to get MC closure in this analysis

 A. Czarnecki, J. Korner, and J. Piclum, "Helicity fractions of W bosons from top quark decays at next-to-next-to leading order in QCD", *Phys. Rev.* D 81 (2010) 111503(R).

0 lepton: Jets + MET

Rebalance+smear QCD prediction: closure test

R&MR

Data-driven background estimation

R&MR

Data-driven background estimation

- W+jets dominated (>90%)
- Fit with 2 exponentials
- Extract the 1st component
- Plot as a function of (R cut)²
- Correction factors:
 - p0 (data) / p0 (MC)
 - p1 (data) / p1 (MC)

Reconstructed Particle Jets

Intervals and Limits for a Physically Bounded μ

- Prototype: measurement x is unbiased Gaussian estimate of μ . (Let σ =1.) What is 95% C.L. Upper Limit (UL)?
- 1986: Six methods for UL surveyed by V. Highland (VH) include U.L.
 = max(0, x + 1.64) and U.L. = max(0,x) + 1.64.
- RPP 1986: Bayesian: uniform prior on the mean μ for $\mu \ge 0$, prior prob = 0 for $\mu < 0$. (VH's other five not mentioned.)
- 1994,96: 3 ad-hoc frequentist recipes, one using max(x,0).
- 1998: Feldman & Cousins (FC) "Unified Approach" in (Kendall and Stuart) replaces ad hoc frequentist
- 2002: CLS from LEP added to Bayesian and FC.
- CMS Statistics Committee recommends using (at least) one of the three (red) methods in 2002-present PDG RPP.
- ATLAS SC method implies U.L. = max(0, x + 1.64) before power constraint (PC), U.L. = max(-1,x) + 1.64 after PC.

Comparison of ATLAS PCL with the three methods in PDG

(Atlas unconstrained U.L. is zero, not null, for x < -1.64)

ATLAS PCL re-opens discussion on use of diagonal line along with ad hoc constraint, out of favor for many years, not recommended by CMS SC.

CMS and ATLAS SC's are reviewing arguments and what has been learned in 25+ years. Academic statisticians have commented as well.

Just tip of iceberg: Poisson example brings in other issues. Nuisance parameters yet more. Choice of test statistic varies.

α_T fully hadronic analysis

 α_{T} variable

- The α_T analysis was optimized for fast discovery
 - goal was: kill QCD
 - first LHC SUSY paper
 - <u>http://arxiv.org/pdf/1</u>
 <u>101.1628.pdf</u>

QCD:

 $\alpha_{T} = 0.5$ if jets are back-to-back and well measured $\alpha_{T} < 0.5$ if energy mismeasurement

α_{T} fully hadronic analysis

Data-driven background estimation

